lunes, 26 de diciembre de 2016

12 de noviembre en el CIPEC

Dos sábados después de la sesión del 29 de octubre nos volvimos a reunir. El 5 de noviembre estuvo a que los chicos desarrollaron la tarea asignada, trabajada con Toño y la maestra Elda.

La foto muestra la construcción que entregaron al llegar a la sesión y sobre lo que conversaríamos en la segunda parte. Es muy sencillo evaluar el desempeño en este tipo de tareas, pero no el proceso. Entre otras cosas la escuela tradicional es más enfática en la vistosidad de los constructos que en el cuidado de su realización; por otra parte, el uso eficiente de la regla y el compás, o las escuadras, no es una prioridad en la escuela y un más o menos es suficiente. Y se observa a primera vista.
Un estudio de hace unos 25 años resaltaba que las niñas obtenían mejores notas que los varones, hasta la secundaria, simplemente por el esmero en la presentación de trabajos y no por la calidad de los contenidos. Y eso se refuerza todavía.


La primera parte de la sesión estuvo dedicada a hablar de pesos y medidas. En alguna sesión anterior algunos de los chicos habían declarado no saber lo que significaba un kilo, que es el nombre común para kilogramo cuando hacemos compras. Y me pareció significativo. Por supuesto, el significado de "kilo" como prefijo también se les escapaba.

Provista de una balanza de platillos comencé por preguntar si sabían qué era y para qué servía. Dijeron que no. Aproveché que dos empleadas del CIPEC habían entrado al aula para sacar algunas sillas para pedir a una de ellas, la señora Lolis, que respondiera a la pregunta, lo cual hizo sin problema. Con su respuesta puse en funcionamiento la balanza utilizando un plumón como objeto a pesar:

Discutimos también algunas de las aplicaciones del concepto de balanza, y los otros tipos de balanzas, como la de cocina que también llevé a la sesión.


Pasamos luego a plantear un problema para que ellos resolvieran (sin tener el kilogramo de frijol)


Las respuestas se concentraron en el pizarrón, como siempre:


En la segunda parte de la sesión retomamos la construcción entregada al incio. Primero, discutir conceptos muy básicos, utilizados para saber que lo que construyeron no estaba bien elaborado. Hay que recordar que se trata de un taller de matemáticas que trata de combinar el arte y la vida real, pero el fundamento matemático es esencial.
Entre las cosas que los alumnos deberían de haber podido calcular está el largo de una de las columnas de papel que hicieron en función de su ubicación sobre lo que debería ser la recta que contuviera los centros de las bases de las columnas. Y viceversa: determinar la altura de una de tales columnas dependiendo de la posición en que fuera a ubicarse.


Para no variar, cuando se trata de hacer frente a los errores que cometemos, surgen "los culpables". Y cada uno tiene uno o varios en mente: los maestros, los padres de familia, las instituciones y los propios chicos, todo depende a quién se le pregunte.




Continuamos hablando sobre lo que debió guiar su construcción:

De:

Pasamos a hablar de escaleras y sus inclinaciones, y de la pendiente como medida de la inclinación sin utilizar conceptos trigonométricos todavía. Como es mi costumbre de toda la vida, mi cuerpo sirve como instrumento para ayudar a visualizar lo que digo. De una pendiente cero (no inclinación)


A una pendiente positiva (para quienes me observan), pasando luego por todas las opciones:


Para introducir los conceptos matemáticos de manera correcta y útil, no como una mera fórmula:




Para desmitificar y ayudar a entender uno de los conceptos fundamentales en las aplicaciones modernas de las matemáticas:




Hasta ahí, porque hay que dejar madurar algunas cosas antes de ver si servirán para continuar.








domingo, 4 de diciembre de 2016

Del 15 al 29 de octubre, en CIPEC

La siguiente actividad en CIPEC se desarrolló el 22 de octubre pasado.

Una dificultad que encuentran los alumnos. en diferentes niveles e instituciones educativas, es la de construir el espacio en tres dimensiones. Mi primera observación en alumnos universitarios ocurrió en 2010, con los alumnos del curso de Física Universitaria, primer semestre.

Buena parte de ese grupo exhibía una nula capacidad para establecer los cuatro puntos cardinales, a pesar de estar viendo el mar Pacífico y la línea que marca la frontera entre San Diego y Tijuana por la ventana de la universidad. Las dificultades para resolver ejercicios tradicionales tomados de un libro de texto hicieron aflorar esos "detalles": Un avión viaja 450 Km al Norte y luego 370 km al Este ..." resultó ser un reto.

Luego vino la representación de vectores en tres dimensiones y las dudas aparecieron en la mayoría. Hicimos un taller sabatino para ayudarles a construir el espacio y proporcionarles elementos de perspectiva y dibujo técnico (isometría, especialmente).

En el festejo de aniversario que los chicos del CIPEC organizaron por su cuenta, con el apoyo de maestros y autoridades, una de las actividades fue mostrar a sus padres y a la comunidad los murales que han creado y el huerto, así como exponer sus aprendizajes. Me parece que e logro mayor, en un año de trabajo, es verlos tomar la palabra, organizarse y expresar lo que les gusta y lo que no.

Cuando los chicos describieron el trabajo sobre los murales, explícitamente comentaron que Toño (su maestro titular), había dibujado unos "exágonos" y los tiralíneas con una regla, refiriéndose al primer mural de la imagen (a la izquierda), para que ellos pintaran con los colores que habían seleccionado.



En una sesión anterior una de las chicas había comentado sobre las dificultades que estaba teniendo con el dibujo en isométrico (ni siquiera tenía claro el nombre) en el bachillerato.
Con todo eso en la cabeza preparé un par de "instrumentos". Mis inspiradores: Durero y Leonardo.

La cuadrícula, hecha con popotes e hilaza, ciertamente no es de lo más preciso que existe, pero cumplió su función como instrumento para reconocer lo que vemos, independientemente de lo que sabemos.







El otro constructo, sin nombre aún, serviría para ilustrar lo que es un punto de fuga y por eso los cordones no están amarrados, fijos, lo que permite moverlos y mostrar la caja desde diferentes ángulos.



Para arrancar hablamos de los bordados y textiles y las diferentes técnicas, ancestrales algunas. En la escuela primaria (pública, para niñas) a la que asistí en Tepic, las tardes se dedicaban a aprenedr todo tipo de bordados y tejidos, incluído el bordado en seda para hacer un mantón. Luego, algunos documentales sobre el arte de hacer rebozos me hicieron conocer la destreza visual y manual de quienes los elaboran. Los jóvenes de este grupo no tienen experiencia en ninguna de estas artesanías

El punto de cruz y el bordado sobre deshilado fueron buenos referentes para terminar hablando de pixeles (concepto que los chicos desconocían; al buscarlo con ayuda de sus celulares dieron la definición de Wikipedia). La historia me la inventé, ciertamente.




 Las imágenes siguientes muestran el uso de ambos instrumentos. Primero: entrenar el ojo para observar y registrar lo que vemos, no lo que pensamos que es.



La posibilidad de afinar, usando mallas más finas:



Ver un ángulo (la esquina superior del salón, en este caso)






Complementamos con el otro artefacto: cómo se ve una caja (literalmente) desde diferentes puntos de observación.



La representación plana:




Dado que yo estría ausente por dos sábados, el trabajo planeado para que Toño lo desarrollara con ellos fue la siguiente:


  1.        Llevar un envase de cartón: por ejemplo, un tetrapack (primero los prismas). Los chicos formarán un círculo alrededor del envase, de manera que cada uno pueda verlo desde un punto de vista particular (puedes tomar foto de cada uno, desde detrás de su cabeza, para captar lo que el chico ve). Cada uno deberá dibujar lo que ve.
  2.       Mismo ejercicio, pero ahora con un objeto distinto: puede ser una silla.
  3.       Mismo ejercicio, pero ahora con una botella transparente con agua hasta la mitad de la altura
En cada caso, ellos deberán reportar, junto a su dibujo, las dificultades que encontraron. Y todos pueden contrastar su dibujo con la foto, porque la foto muestra lo que ven.
Si quieres extender el ejercicio, puedes repetirlo, desde el huerto, cada quien dibujando el edificio (la mirada que tú fijes) y contrastar las producciones. 

Para el siguiente sábado (5 de noviembre) sería interesante que pudieran construir con popotes o palitos de paleta o cartulina recortada, una alameda (una fila de arbolitos) como se vería en perspectiva a lo largo de un camino. El punto de fuga lo podrías establecer tú (pienso en un escenario, en el que en una distancia muy corta, equivalente a lo ancho del foro, crean la ilusión de la perspectiva).

Las fotos dan cuenta del trabajo realizado y de las dificultades que todavía experimentaban en la sesión del 29 de octubre:

 

 

 

 
 













sábado, 3 de diciembre de 2016

8 de octubre en CIPEC



Después de haber trabajado con el triángulo de Pascal en la sesión del 1 de octubre, retomamos lo ya desarrollado para aplicarlo en una aproximación a la probabilidad de una variable binomial. Antes, en otras sesiones, hemos abordado los significados de las probabilidades frecuencial y clásica.

Todos los términos que empleamos se van explicitando durante la sesión. Lo que se muestra en las tomas del pizarrón son, en general, las aportaciones de los chicos después de algunas actividades con lo que tenemos a la mano: dejar caer un plumón, echar un volado, etc. 

Algunas nociones deben ser replanteadas (como el significado de un porcentaje). Ciertamente no es suficiente. Sería necesario retrabajar los conceptos y los procesos durante los días de la semana o poder retomarlos varias veces durrante un ciclo escolar completo, pero no disponemos de esos tiempos.





Al elabora su propio  diagrama de árbol cuentan las opciones siguiendo con el dedo cada rama para establecer la sucesión de eventos ocurridos,

En este caso, además, se hizo evidente la relación entre la frecuencia de los valores de la variable (número de águilas en una serie de volados) y los valores del renglón correspondiente en el triángulo de Pascal.


Para continuar con el cálculo de la probabilidad en una situación donde ambos resultados en un volado tienen la misma probabilidad:


Y luego una situación en que la probabilidad de un resultado es mayor que la del otro:


Para plantear el caso mostrado en Rosencrantz & Guildestern are dead, y la manera en la que concluyen que están muertos. La situación se simplificó de la manera descrita en el pizarrón. 


Y cerramos la sesión, y el tema, con una aplicación a su vida cotidiana: aprobar un examen al "tin marín" cuando no se ha estudiado ni se ha aprendido durante el curso.