Mostrando entradas con la etiqueta medición. Mostrar todas las entradas
Mostrando entradas con la etiqueta medición. Mostrar todas las entradas

lunes, 6 de febrero de 2017

Primera semana de febrero, en el CIPEC

Conociendo las carencias, la parte difícil de la construcción de un caleidoscopio o de un periscopio es conseguir lo que es necesario comprar: los espejos. Durante los primeros días del mes se me ocurrió construir un caleidoscopio de canica, con lo que hubiera en mi casa.

La idea vino de un regalo que me compró mi hijo en la Sagrada Familia, en Barcelona:

 

Sin tener el objeto a la mano (todavía no me lo envía), decidí construirlo con una canica verde, cartón de una caja vacía, papel aluminio en lugar de espejos, y experimentar:

a) Midiendo y utilizando el compás, por supuesto, para trazar el prisma:



Y construir un sencillísimo "tutorial" que hay que leer en el sentido de las manecillas del reloj (esta foto no la compartí con los chicos, solamente los constructos realizados):


La quinta imagen (verde) es lo que se observa a través del pequeño orificio hecho con la punta de un bolígrafo, viendo a través de la lente de mi celular. La sugerencia es utilizar una canica sin color, tan transparente como sea posible.

Con eso llegué a la sesión del 4 de febrero. Y la idea de aprovechar y experimentar para construir otro caleidoscopio pero con el prisma circunscrito.Primero: algo de vocabulario y la primera pregunta: ¿Qué necesitamos? Los chicos fueron dando las respuestas:

 

Y fueron simplificando el proceso:

 

La siguiente pregunta, ¿cómo medir el radio o diámetro de la canica?, encontró una respuesta con el uso de nuestra tecnología disponible (necesito un vernier, por cierto).


 

Lo cual condujo a la siguiente pregunta: conocido el radio, ¿cómo calcular la longitud del lado del prisma?


Y a establecer la ley de cosenos como medida expedita (y uno de los chicos preguntó qué cosa era eso del coseno... y abrió otra puerta):


Finalmente se estableció el proceso para completar la construcción:



El signo de "aproximado" para el valor de x se refiere a que en la construcción real del objeto, que no es el ideal del cálculo geométrico puro, hay que considerar lo grueso del cartón... o no cabe el prisma en el tubo ;)

Vino luego la premiación de los periscopios. Dos de los chicos no pudieron/tuvieron para comprar los espejos, pero los tomamos en cuenta; el de colores fue hecho por los hijos de la maestra Edna, fuera de concurso (pero les dimos un premio). Los otros dos, azules ambos, fueron los único a evaluar con la rúbrica previamente entregada: 
  • El mejor construido, consideraron después de examinarlos, fue el azul más largo, opaco 
  • El mejor presentado fue el azul cúbico, brillante
  • Ambos pasaron la prueba con el rayo láser 
  • Carmina, con el periscopio cúbico,  hizo una brillante exposición de lo que es, el funcionamiento y los usos de un periscopio. Fue la ganadora por unanimidad.


Durante las siguientes dos horas los chicos trabajaron con la maestra Edna construyendo artesanías para vender el 14 de febrero:


Los productos quedaron casi terminados:


Mientras iban terminando, alrededor de la una de la tarde, les propuse pequeños acertijos; les presté un montón de calculadoras solares, sencillas, que mi hermano Juan rescató hace unos años, y me regaló, de lo que tiran las escuelas en California:


 
 

"Maestra, usted es bruja", declaró una de las chicas. Hay que admitirlo, pues. Y luego "descubrir" el truco:


Cerramos la sesión. La maestra Edna, que sí sabe hacer cosas con cuidado y paciencia, se encargará de que construyan sus caleidoscopios de canica en la sesión del 11 de febrero en que estaré ausente. Cada chico solamente debe de llevar su canica. Y habrá premios, por supuesto.








lunes, 26 de diciembre de 2016

12 de noviembre en el CIPEC

Dos sábados después de la sesión del 29 de octubre nos volvimos a reunir. El 5 de noviembre estuvo a que los chicos desarrollaron la tarea asignada, trabajada con Toño y la maestra Elda.

La foto muestra la construcción que entregaron al llegar a la sesión y sobre lo que conversaríamos en la segunda parte. Es muy sencillo evaluar el desempeño en este tipo de tareas, pero no el proceso. Entre otras cosas la escuela tradicional es más enfática en la vistosidad de los constructos que en el cuidado de su realización; por otra parte, el uso eficiente de la regla y el compás, o las escuadras, no es una prioridad en la escuela y un más o menos es suficiente. Y se observa a primera vista.
Un estudio de hace unos 25 años resaltaba que las niñas obtenían mejores notas que los varones, hasta la secundaria, simplemente por el esmero en la presentación de trabajos y no por la calidad de los contenidos. Y eso se refuerza todavía.


La primera parte de la sesión estuvo dedicada a hablar de pesos y medidas. En alguna sesión anterior algunos de los chicos habían declarado no saber lo que significaba un kilo, que es el nombre común para kilogramo cuando hacemos compras. Y me pareció significativo. Por supuesto, el significado de "kilo" como prefijo también se les escapaba.

Provista de una balanza de platillos comencé por preguntar si sabían qué era y para qué servía. Dijeron que no. Aproveché que dos empleadas del CIPEC habían entrado al aula para sacar algunas sillas para pedir a una de ellas, la señora Lolis, que respondiera a la pregunta, lo cual hizo sin problema. Con su respuesta puse en funcionamiento la balanza utilizando un plumón como objeto a pesar:

Discutimos también algunas de las aplicaciones del concepto de balanza, y los otros tipos de balanzas, como la de cocina que también llevé a la sesión.


Pasamos luego a plantear un problema para que ellos resolvieran (sin tener el kilogramo de frijol)


Las respuestas se concentraron en el pizarrón, como siempre:


En la segunda parte de la sesión retomamos la construcción entregada al incio. Primero, discutir conceptos muy básicos, utilizados para saber que lo que construyeron no estaba bien elaborado. Hay que recordar que se trata de un taller de matemáticas que trata de combinar el arte y la vida real, pero el fundamento matemático es esencial.
Entre las cosas que los alumnos deberían de haber podido calcular está el largo de una de las columnas de papel que hicieron en función de su ubicación sobre lo que debería ser la recta que contuviera los centros de las bases de las columnas. Y viceversa: determinar la altura de una de tales columnas dependiendo de la posición en que fuera a ubicarse.


Para no variar, cuando se trata de hacer frente a los errores que cometemos, surgen "los culpables". Y cada uno tiene uno o varios en mente: los maestros, los padres de familia, las instituciones y los propios chicos, todo depende a quién se le pregunte.




Continuamos hablando sobre lo que debió guiar su construcción:

De:

Pasamos a hablar de escaleras y sus inclinaciones, y de la pendiente como medida de la inclinación sin utilizar conceptos trigonométricos todavía. Como es mi costumbre de toda la vida, mi cuerpo sirve como instrumento para ayudar a visualizar lo que digo. De una pendiente cero (no inclinación)


A una pendiente positiva (para quienes me observan), pasando luego por todas las opciones:


Para introducir los conceptos matemáticos de manera correcta y útil, no como una mera fórmula:




Para desmitificar y ayudar a entender uno de los conceptos fundamentales en las aplicaciones modernas de las matemáticas:




Hasta ahí, porque hay que dejar madurar algunas cosas antes de ver si servirán para continuar.








domingo, 15 de noviembre de 2015

La construcción de una caja

Los chicos con los que trabajamos Toño y yo (él trabaja con ellos sobre temas de lectura, redacción, dibujo) tienen entre 12 y 15 año. El conocimiento algebraico es practicamente inexistente por los pésimos programas educativos vigentes y porque los docentes solamente siguen alguno de los libros de texto que siguen los pésimos programas de manera muy mala.

La sesión comenzó a las 9:00 en punto, cuando apenas habían llegado la mitad de los chicos. Sin pausa, una de las niñas mayores me pidió que le explicara lo que era una ecuación cuadrática (cosas que no ha entendido en la escuela).

Comencé por explicar en el pizarrón, utilizando plumones de diferentes colores para diferenciar los elementos, la escritura general formal de un polinomio, los coeficientes, los exponentes, la variable (aquí no es incógnita). Entendido eso, que el exponente mayor se llama grado del polinomio y que el coeficiente en ese término se llama coeficiente principal. A partir de ahí que, dependiendo del grado del polinomio se hablaba de lineales (grado 1), cuadráticos (grado 2), cúbicos (grado 3), etc.

Entonces, una ecuación cuadrática, expliqué, es un polinomio de grado 2 igualado a cero:

                                            a*x^2 + b*x^1+ c*x^0 = 0

haciendo explícitas todas las potencias de x y comentando que no escribimos x^1 sino x, porque se supone que eso ya lo sabemos; ni escribimos c*x^0 porque se supone que sabemos también que x^0 = 1 y entonces c*x^0 se convierte en c*1 = c

Es decir, escribimos c*x^0 = c y la ecuación se escribe simplemente como

                                           a*x^2 + b*x + c = 0.

Agregué que las funciones cuadráticas (y expliqué la diferencia entre polinomio, ecuación y función) eran muy importantes en el estudio de los problemas de tiro parabólico, lo que ilustré con un problema sencillo, la gráfica, y todo lo que resulta de ahí.

Mientras, llegaron todos los estudiantes.

Expliqué la tarea a desarrollar y la escribí en el pizarrón:


Cada equipo de 4 disponía de una única hoja tamaño carta de papel de color rosa o verde. Si la echaban a perder no podrían tener otra. Además, sobre la mesa del profesor (por un lado del salón) había juegos de geometría, tijeras, cinta adhesiva y papel milimétrico.

Con una hoja blanca mostré que había que marcar dobleces sobre los cuatro bordes de la hoja, todos a la misma distancia de cada borde, para poder formar las esquinas correctamente, y mostré cómo doblar. Se les pidió que tomaran nota de cada cosa que iban decidiendo y haciendo para elaborar el reporte que presentarían al final de la sesión. Y comenzaron a trabajar de manera independiente, con mi supervisión constante para detectar si estaban atorados en algún punto o si estaban en otra conversación y actuar de manera pertinente.

Los tres equipos comenzaron por medir la hoja de color con mayor o menor precisión: 28 por 21.5 centímetros.


Equipo 1, muy activo. Registraron todo su proceso y lo fueron transformando para hacerlo más ágil y claro. Nunca doblaron la hoja de color para hacer tanteos. Solamente medición y cálculo del volumen en cada ocasión que cambiaban la medida que debían "recortar" de cada lado. Tampoco utilizaron el papel milimétrico. Era el equipo de los más jóvenes.
Desde el principio me dijeron que la base rectangular de la caja mediría 28 cm menos dos veces lo que tenían que doblar, por 21.5 menos esas dos veces. Pero estaba variando esa cantidad en cada cálculo. Su cuaderno se percibe, en la foto, lleno de esas explicaciones. Les pregunté que, si sabían que esa cantidad era la que hací que todo cambiara estaba variando, qué podían hacer para simplificar: "ponerle x" dijo una de las niñas. El cálculo se simplificó y sustituyeron la escritura que se observa por una tabla en la que iban registrando el valor de x y el volumen resultante, en cada caso.
El valor inicial que dieron al doblez fue de 4 cm, pero fueron a 3.5, 4.25 y 4.5 para determinar si el volumen crecía o no.  x = 4 parecía el mejor valor. Les sugerí verlo con mucho más precisión: calcularon para 4.01 y 4.02. el volumen era mayor en 4.01 y bajaba en 4.02. Les confié el secreto de Wolfram Alpha y el valor que proporciona: x = 4.019


Equipo 2, haciendo dobleces, por tanteos, con una hoja de papel milimétrico. Sin llevar un registro, a pesar de la insistencia de mi parte. En algún moment uno de ellos sugirió que mientras menor la altura y mayor la base rectangular, el volumen sería mayor. Le sugerí que pensara qué pasaría si fuera como una charola de hornear. Cayó en cuenta de su error. Comenzaron a doblar una y otra vez la hoja de color, sin registrar lo que resultaba, hasta que dejó de ser útil. La hoja de papel milimétrico la utilizaron mal, pues comenzaron a marcar las distancias a partir de los márgenes blancos y no de los bordes. Construyeron una caja, sí, pero no podían determinar si era la de mayor volumen.



Equipo 3, sin mucha participación, sin organización a pesar de a reiteración. reguntaron si la caja podría tener forma de cubo. Les pregunté si doblando la misma distancia en cada lado de la hoja obtendrían un cuadrado para la base, dijeron que no. Doblaron la hoja milimétrica para armar una caja, como se observa, y después midieron. Doblaron la hoja de color múltiples veces. No lograron avanzar.


Pasados 40 minutos el Equipo 1 dió cuenta de su trabajo y, por razones de tiempo, yo me puse en calidad de escribana para llevar el proceso al pizarrón de manera concisa. Las flechas que conectan los cálcullos, gráficos y tabla fueron parte de las respuestas a las preguntas de sus compañeros. Cuando iba a tomar la foto del pizarrón, ellos mismos se acomodaron para salir, orgullosos de su logro.


Termiamos con un regreso al punto de iinicio de la sesión: dado que en la fórmula de volumen, explícita en el pizarrón, hay tres x (una en cada factor), tenemos una función cúbica. Y que podíamos graficarla o pedirle al Wolfram Alpha que nos dijera todos sobre el polinomio cúbico involucrado. 


Sí, hay talento a pesar de lo que diga el INEE y sus exámenes que miden lo que a nadie le importa.