lunes, 26 de diciembre de 2016

12 de noviembre en el CIPEC

Dos sábados después de la sesión del 29 de octubre nos volvimos a reunir. El 5 de noviembre estuvo a que los chicos desarrollaron la tarea asignada, trabajada con Toño y la maestra Elda.

La foto muestra la construcción que entregaron al llegar a la sesión y sobre lo que conversaríamos en la segunda parte. Es muy sencillo evaluar el desempeño en este tipo de tareas, pero no el proceso. Entre otras cosas la escuela tradicional es más enfática en la vistosidad de los constructos que en el cuidado de su realización; por otra parte, el uso eficiente de la regla y el compás, o las escuadras, no es una prioridad en la escuela y un más o menos es suficiente. Y se observa a primera vista.
Un estudio de hace unos 25 años resaltaba que las niñas obtenían mejores notas que los varones, hasta la secundaria, simplemente por el esmero en la presentación de trabajos y no por la calidad de los contenidos. Y eso se refuerza todavía.


La primera parte de la sesión estuvo dedicada a hablar de pesos y medidas. En alguna sesión anterior algunos de los chicos habían declarado no saber lo que significaba un kilo, que es el nombre común para kilogramo cuando hacemos compras. Y me pareció significativo. Por supuesto, el significado de "kilo" como prefijo también se les escapaba.

Provista de una balanza de platillos comencé por preguntar si sabían qué era y para qué servía. Dijeron que no. Aproveché que dos empleadas del CIPEC habían entrado al aula para sacar algunas sillas para pedir a una de ellas, la señora Lolis, que respondiera a la pregunta, lo cual hizo sin problema. Con su respuesta puse en funcionamiento la balanza utilizando un plumón como objeto a pesar:

Discutimos también algunas de las aplicaciones del concepto de balanza, y los otros tipos de balanzas, como la de cocina que también llevé a la sesión.


Pasamos luego a plantear un problema para que ellos resolvieran (sin tener el kilogramo de frijol)


Las respuestas se concentraron en el pizarrón, como siempre:


En la segunda parte de la sesión retomamos la construcción entregada al incio. Primero, discutir conceptos muy básicos, utilizados para saber que lo que construyeron no estaba bien elaborado. Hay que recordar que se trata de un taller de matemáticas que trata de combinar el arte y la vida real, pero el fundamento matemático es esencial.
Entre las cosas que los alumnos deberían de haber podido calcular está el largo de una de las columnas de papel que hicieron en función de su ubicación sobre lo que debería ser la recta que contuviera los centros de las bases de las columnas. Y viceversa: determinar la altura de una de tales columnas dependiendo de la posición en que fuera a ubicarse.


Para no variar, cuando se trata de hacer frente a los errores que cometemos, surgen "los culpables". Y cada uno tiene uno o varios en mente: los maestros, los padres de familia, las instituciones y los propios chicos, todo depende a quién se le pregunte.




Continuamos hablando sobre lo que debió guiar su construcción:

De:

Pasamos a hablar de escaleras y sus inclinaciones, y de la pendiente como medida de la inclinación sin utilizar conceptos trigonométricos todavía. Como es mi costumbre de toda la vida, mi cuerpo sirve como instrumento para ayudar a visualizar lo que digo. De una pendiente cero (no inclinación)


A una pendiente positiva (para quienes me observan), pasando luego por todas las opciones:


Para introducir los conceptos matemáticos de manera correcta y útil, no como una mera fórmula:




Para desmitificar y ayudar a entender uno de los conceptos fundamentales en las aplicaciones modernas de las matemáticas:




Hasta ahí, porque hay que dejar madurar algunas cosas antes de ver si servirán para continuar.








domingo, 4 de diciembre de 2016

Del 15 al 29 de octubre, en CIPEC

La siguiente actividad en CIPEC se desarrolló el 22 de octubre pasado.

Una dificultad que encuentran los alumnos. en diferentes niveles e instituciones educativas, es la de construir el espacio en tres dimensiones. Mi primera observación en alumnos universitarios ocurrió en 2010, con los alumnos del curso de Física Universitaria, primer semestre.

Buena parte de ese grupo exhibía una nula capacidad para establecer los cuatro puntos cardinales, a pesar de estar viendo el mar Pacífico y la línea que marca la frontera entre San Diego y Tijuana por la ventana de la universidad. Las dificultades para resolver ejercicios tradicionales tomados de un libro de texto hicieron aflorar esos "detalles": Un avión viaja 450 Km al Norte y luego 370 km al Este ..." resultó ser un reto.

Luego vino la representación de vectores en tres dimensiones y las dudas aparecieron en la mayoría. Hicimos un taller sabatino para ayudarles a construir el espacio y proporcionarles elementos de perspectiva y dibujo técnico (isometría, especialmente).

En el festejo de aniversario que los chicos del CIPEC organizaron por su cuenta, con el apoyo de maestros y autoridades, una de las actividades fue mostrar a sus padres y a la comunidad los murales que han creado y el huerto, así como exponer sus aprendizajes. Me parece que e logro mayor, en un año de trabajo, es verlos tomar la palabra, organizarse y expresar lo que les gusta y lo que no.

Cuando los chicos describieron el trabajo sobre los murales, explícitamente comentaron que Toño (su maestro titular), había dibujado unos "exágonos" y los tiralíneas con una regla, refiriéndose al primer mural de la imagen (a la izquierda), para que ellos pintaran con los colores que habían seleccionado.



En una sesión anterior una de las chicas había comentado sobre las dificultades que estaba teniendo con el dibujo en isométrico (ni siquiera tenía claro el nombre) en el bachillerato.
Con todo eso en la cabeza preparé un par de "instrumentos". Mis inspiradores: Durero y Leonardo.

La cuadrícula, hecha con popotes e hilaza, ciertamente no es de lo más preciso que existe, pero cumplió su función como instrumento para reconocer lo que vemos, independientemente de lo que sabemos.







El otro constructo, sin nombre aún, serviría para ilustrar lo que es un punto de fuga y por eso los cordones no están amarrados, fijos, lo que permite moverlos y mostrar la caja desde diferentes ángulos.



Para arrancar hablamos de los bordados y textiles y las diferentes técnicas, ancestrales algunas. En la escuela primaria (pública, para niñas) a la que asistí en Tepic, las tardes se dedicaban a aprenedr todo tipo de bordados y tejidos, incluído el bordado en seda para hacer un mantón. Luego, algunos documentales sobre el arte de hacer rebozos me hicieron conocer la destreza visual y manual de quienes los elaboran. Los jóvenes de este grupo no tienen experiencia en ninguna de estas artesanías

El punto de cruz y el bordado sobre deshilado fueron buenos referentes para terminar hablando de pixeles (concepto que los chicos desconocían; al buscarlo con ayuda de sus celulares dieron la definición de Wikipedia). La historia me la inventé, ciertamente.




 Las imágenes siguientes muestran el uso de ambos instrumentos. Primero: entrenar el ojo para observar y registrar lo que vemos, no lo que pensamos que es.



La posibilidad de afinar, usando mallas más finas:



Ver un ángulo (la esquina superior del salón, en este caso)






Complementamos con el otro artefacto: cómo se ve una caja (literalmente) desde diferentes puntos de observación.



La representación plana:




Dado que yo estría ausente por dos sábados, el trabajo planeado para que Toño lo desarrollara con ellos fue la siguiente:


  1.        Llevar un envase de cartón: por ejemplo, un tetrapack (primero los prismas). Los chicos formarán un círculo alrededor del envase, de manera que cada uno pueda verlo desde un punto de vista particular (puedes tomar foto de cada uno, desde detrás de su cabeza, para captar lo que el chico ve). Cada uno deberá dibujar lo que ve.
  2.       Mismo ejercicio, pero ahora con un objeto distinto: puede ser una silla.
  3.       Mismo ejercicio, pero ahora con una botella transparente con agua hasta la mitad de la altura
En cada caso, ellos deberán reportar, junto a su dibujo, las dificultades que encontraron. Y todos pueden contrastar su dibujo con la foto, porque la foto muestra lo que ven.
Si quieres extender el ejercicio, puedes repetirlo, desde el huerto, cada quien dibujando el edificio (la mirada que tú fijes) y contrastar las producciones. 

Para el siguiente sábado (5 de noviembre) sería interesante que pudieran construir con popotes o palitos de paleta o cartulina recortada, una alameda (una fila de arbolitos) como se vería en perspectiva a lo largo de un camino. El punto de fuga lo podrías establecer tú (pienso en un escenario, en el que en una distancia muy corta, equivalente a lo ancho del foro, crean la ilusión de la perspectiva).

Las fotos dan cuenta del trabajo realizado y de las dificultades que todavía experimentaban en la sesión del 29 de octubre:

 

 

 

 
 













sábado, 3 de diciembre de 2016

8 de octubre en CIPEC



Después de haber trabajado con el triángulo de Pascal en la sesión del 1 de octubre, retomamos lo ya desarrollado para aplicarlo en una aproximación a la probabilidad de una variable binomial. Antes, en otras sesiones, hemos abordado los significados de las probabilidades frecuencial y clásica.

Todos los términos que empleamos se van explicitando durante la sesión. Lo que se muestra en las tomas del pizarrón son, en general, las aportaciones de los chicos después de algunas actividades con lo que tenemos a la mano: dejar caer un plumón, echar un volado, etc. 

Algunas nociones deben ser replanteadas (como el significado de un porcentaje). Ciertamente no es suficiente. Sería necesario retrabajar los conceptos y los procesos durante los días de la semana o poder retomarlos varias veces durrante un ciclo escolar completo, pero no disponemos de esos tiempos.





Al elabora su propio  diagrama de árbol cuentan las opciones siguiendo con el dedo cada rama para establecer la sucesión de eventos ocurridos,

En este caso, además, se hizo evidente la relación entre la frecuencia de los valores de la variable (número de águilas en una serie de volados) y los valores del renglón correspondiente en el triángulo de Pascal.


Para continuar con el cálculo de la probabilidad en una situación donde ambos resultados en un volado tienen la misma probabilidad:


Y luego una situación en que la probabilidad de un resultado es mayor que la del otro:


Para plantear el caso mostrado en Rosencrantz & Guildestern are dead, y la manera en la que concluyen que están muertos. La situación se simplificó de la manera descrita en el pizarrón. 


Y cerramos la sesión, y el tema, con una aplicación a su vida cotidiana: aprobar un examen al "tin marín" cuando no se ha estudiado ni se ha aprendido durante el curso.



martes, 29 de noviembre de 2016

Una perspectiva, desde Hermann Weyl

Comencé a leer, por fin, los libros que traje de Los Angeles.

El primero es Levels of Infinity, que es un conjunto de trabajos de Hermann Weyl.



La Introducción es sumamente atractiva y enriquecedora; un paseo por los diferentes textos que forman este volumen. Así, al referirse a la época intuicionista de Weyl, nos presenta este texto con un bello ejemplo de aplicación del tercero excluido:




Los pensamientos de Wey apuntan a la matemática rica en conceptos y no a un juego de símbolos y reglas:


Mathematics is not the stiff and paralyzing schema the layman prefers to imagine; rather, with mathematics we stand precisely at the intersection of bondage and freedom that is the essence of the human itself.


De momento me parece más que interesante el trabajo que lleva por título Topology and Abstract Algebra as Two Roads of Mathematical Comprehension, en las páginas 33 a 48, que se refiere a una charla impartida en un curso de verano para profesores suizos, en 1931. Peter Pensic, editor de este libro y autor de la Introducción, señala que en esta plática Weyl "muestra su interés en mejorar la instrucción secundaria y en guiar su desarrollo".  Me parece, además, que propone una bella manera de continuar el taller que ofrecí en el Congreso de la Sociedad Matemática Mexicana, en Aguascalientes, hace justo un mes.

Como supongo que es absolutamente ilegal que copie todo el texto, hice un escaneo de las primeras páginas para que se den una idea. Sin embargo, pueden descargar el texto completo, en dos partes:
Parte I
Parte II

Disfruten!




martes, 8 de noviembre de 2016

Antecedentes y consecuentes de la factorización de expresiones algebraicas

A través del Dr. César Cristóbal Escalante fui invitada a presentar un curso a profesores de matemáticas de bachillerato, en el marco del XLIX Congreso de la Sociedad Matemática Mexicana (SMM), el 28 de octubre pasado, en la Universidad Autónoma de Aguascalientes.

Mi compromiso con los participantes fue poner a su disposición todos los materiales utilizados, en una entrada de este blog.  Es lo que encontrarán a continuación. Todos los enlaces a todos los recursos utilizados están ahí mismo disponibles, anillados uno dentro de otro en ocasiones.


Antecedentes y consecuentes de la factorización de expresiones algebraicas

Presentación

En experiencias con alumnos de bachillerato se detectan problemas que ellos encuentran cuando se trata de factorizar expresiones polinomiales o racionales. Los ejercicios que se les asignan pueden tener como finalidad:
  •         La determinación de raíces enteras y/o racionales de un polinomio
  •         La simplificación de una fracción algebraica o una suma de fracciones algebraicas


Los problemas, dificultades y frustraciones que los estudiantes encuentran pueden resultar de:
  •          El desconocimiento de reglas más o menos universales que les permitan llevar a cabo ese trabajo, en lugar de aprender cada una de las reglas y casos que suelen presentarse en un libro de texto comercial
  •          La confusión que surge cuando la expresión a factorizar contiene dos literales
  •         Desconocer la relación entre las raíces de un polinomio y los factores lineales en su factorización
  •         La falta de antecedentes explícitos que les permitan recuperar estrategias en la operación con expresiones polinomiales y racionales
  •        Encontrarse con un caso en que la factorización no se da en los enteros y desconocer las otras posibilidades para determinar raíces racionales o, peor, aproximar raíces irracionales
  •         Desconocer aplicaciones que le permitan verificar por su cuenta, de manera independiente, si ha resuelto un ejercicio correctamente antes de entregar una tarea mal hecha y de tratar de entender los errores cometidos de manera independiente

En este curso/taller hay dos propósitos principales:
  1.  Responder a la pregunta de por qué es necesario aprender a factorizar expresiones polinomiales y aplicar ese aprendizaje para resolver los ejercicios que se les asignan
  2.  Proporcionar elementos que permitan al profesor y al alumno recuperar las principales ideas y estrategias involucradas en la factorización de expresiones polinomiales tomando en cuenta la estructura del anillo de polinomios y su isomorfismo con el anillo de enteros.

De paso, vislumbrar estrategias de factorización y de control del proceso, por el mismo alumno, que permitan aligerar la carga de memorización que suele requerir un curso tradicional de álgebra intermedia.



Programa de actividades del curso/taller
I.              Primeras preguntas (a responder una en cada uno de los equipos previamente formados):
1.     ¿Cuál es la importancia de la factorización de polinomios desde el primer curso de algebra al que los alumnos son introducidos?
2.     ¿Cuál es la importancia de factorizar siguiendo los procedimientos tradicionales contemplados en los libros de texto?
3.     ¿Cuál es la importancia de factorizar en el futuro académico de los estudiantes?
4.     ¿Cuál es la importancia de todos esos procesos y aprendizajes en el futuro de cualquier persona que cursa un bachillerato?

Tiempo: 15 minutos

Recuperación de la experiencia en voz de los representantes de los equipos: Tiempo 10 minutos

En síntesis, las aportaciones de los participantes apuntan a la necesidad de aprender a factorizar para/por:
  • š  Resolver ecuaciones
  • š  Porque es parte del programa de estudios
  • š  Es similar a un juego de abalorios


II.             Ejercicios de factorización tomados del libro de Uspensky, Theory of Equations (uno diferente para cada equipo, seleccionado de manera aleatoria de entre los propuestos)

 Tiempo: 5 minutos


Los participantes trabajando sobre los ejercicios propuestos






III.            Presentaciones, en el orden en que se discutieron con los participantes:

a.     El lenguaje formal para brindar un acercamiento a la factorización de polinomios partiendo de un conocimiento suficiente de la factorización de enteros. No se trata de perderse en el lenguaje formal ni mucho menos de proponerlo a los estudiantes, sino de aprovechar el comportamiento idéntico de las estructuras de enteros y polinomios, con las operaciones de suma y producto usuales en cada uno, para dar al estudiante herramientas de comprensión y de desarrollo de habilidades en la factorización de polinomios

b.     Algunas opiniones sobre la importancia de la factorización y sus aplicaciones para conocer puntos de vista y ejemplos previamente discutidos por matemáticos y educadores sobre esta problemática generalizada

c.     Factorización de polinomios y educación matemática donde discutimos e integramos el trabajo de la sesión hasta este momento y las reflexiones y experiencias de los participantes.

               Tiempo: 35 minutos


IV.           Cierre: a la luz de todo lo anterior, ¿Qué es lo que el alumno debe saber sobre factorización y para qué? ¿Qué estrategias emplean? ¿Qué funciona?

Las preguntas se respondieron a lo largo de las dos horas de trabajo intenso.



Al terminar: las fotos con los amigos queridos, el diploma y los regalos:
César Cristóbal, una servidora, Elías Loyola, Ana Lilia Rodríguez

Regalos

comprobante ;)


Agradezco a todos los que hicieron que esto fuera posible por su apoyo y por su participación.