domingo, 29 de noviembre de 2015

La sesión de cierre con los chicos del CIPEC

Cinco sesiones de hora y media, una cada sábado, que terminaron ayer, 28 de noviembre.

Interesante y gratificante ver a estos niños/adolescentes que comenzaron diciendo que no entendían cómo se construía la recta numérica, qué era un polinomio, cómo se dividían, y para qué servía el álgebra, llegar a este día con lo que se describe en las fotos en puro lenguaje simbólico, graficando en el plano cartesiano de Desmos.

Esta vez, la explicación se encuentra en las fotos que se comparten en el enlace.

Isoperimétricos

La sesión del 21 de noviembre, con los chiquitos del CIPEC, comenzó un poco antes de la hora habitual. A las 8:45 A.M. tres de los pequeños se presentaron conmigo para decirme que ya me estaban esperando. Las puertas las abren a las 9:00 A.M., ¿o no?, comenté. "No. Ya abrieron y ya estamos en el salón", respondieron. Subí con ellos y, aunque no estaban todos, si había un número suficiente como para dar inicio, comentando acerca de lo que es su día regular: la hora en que se levantan o los levantas, lo que hacen para ayudar en las tareas de su casa, la posición que ocupan en su familia, etc. Algunos agregaron datos sobre el empleo de sus padres, o comentarios sobre su rellación con sus hermanos. Conforme iban llegando iban participanto en esta ronde de conocernos unos a los otros. Toño y yo participamos aportando nuestras propias historias.

Hacia las 9:10 A.M. dimos inicio a la sesión de trabajo. A cada uno le entregué un trozo de listón, todos más o menos de la misma longitud. Y sobre una mesa dispuse llos materiales de trabajo que siempre llevo: escuadras, reglas, lápices, papel milimétrico, cinta adhesiva y hasta un par de compases.

Les conté la historia de Dido también llamada Elisa quien, huyendo de la codicia y crímenes de su hermano Pigmalión, llegó a la tierra de los gétulos, en Africa y pidió hospitalidad y un pedazo de tierra para instalarse. Jarbas, el rey de los gétulos le dió una piel de buey y le dijo que le daría tanta tierra como ella pudiera abarcar con esa piel. Con la tierra que pudo encerrar con esa piel, Dido fundó Cártago. Hasta ahí la historia contada a los chicos y chicas (la historia completa se encuentra aquí) .

El problema para los niños era, entonces, encerrar la mayor área posible con su listón, trabajando de manera individual. Toño y yo nos dedicamos a observar. Las fotos muestran algunos de los acercamientos que observamos:








No hay desorden, no compiten entre ellos. Cada uno sigue un pproceso diferente, al inicio, y van progresando hacia una comprensión mejor del problema y de las posibles soluciones. Hay trabajo muy en forma, intentando, midiendo, contando cuadritos, calculando. En algún momento se oyó decir a uno de los chisco "Ya me emocioné", mientras intentaba otra forma geométrica con su cordón.

Y vino luego la recuperación de los resultados del trabajo individual. Como siempre, me encargo de ir recogiendo las aportaciones de los chicos en el pizarrón, para institucionalizar e conocimiento generado. En esta ocasión, adicionalmente, proporcioné la manera de calcular la altura de un triángulo equilatero a partir del lado. El resto es trabajo del grupo. 




Al terminar esta recuperación les conté el final de la historia de Dido: cómo logró encerrar el terreno de mayor área, para la fundación de Cártago, utilizando la piel de buey que le fue entregada por Jarbas. Y la importancia de pensar de manera creativa para resolver un problema. La actividad completa tomó unos 45 minutos.

El tiempo restante lo dedicamos a planear cómo elaborar una tarjeta de Navidad utilizando Desmos. Por ejemplo, un angelito (una circunferencia para la cabeza, una parábola para el cuerpo, rectas para las alas y una elipse para el halo). Por supuesto, se trataba de una muy breve y contextualizada introducción a las cónicas.

Imaginamos (porque no disponíamos de uno) un cono de beber agua, con agua hasta la mitad. Y las superficies formadas dependiendo de la inclinación que le diéramos: circunferencia, elipse, parábola; la hipérbola fue un acto de fe.

La propuesta, entonces, fue comenzar por tratar de dibujar en Desmos una cabeza de Mickey Mouse. Para eso necesitábamos saber cómo decirle al graficador que dibujara una circunferencia. Eso nos llevó a tener que describir qué es una circunferencia: yo actuaba como centro y e largo de mi brazo como radio (sin decirlo). Primero dieron con que era importante la medida del brazo y alguno recordó que eso se llamaba radio. Pregunté qué pasaría si yo quisiera trazar otro círculo, con el mismo radio, pero diferente del primero; batallaron muy poco para concluir que tenía que cambiar mi ubicación en la cuadrícula del piso. La pregunta fue: ¿cómo se llama ese punto del que depende que el círculo sea diferente? Ciertamente no lo recordaban, y hubo que decírcelos: centro.

Con ayuda de Pitágoras (explícito), encontraron la ecuación de una circunferencia centrada en el origen. Y estuvieron muy complacido dibujando muchas concéntricas. El problema que se les quedó de tarea fue buscar la manera de trazar las orejas. La galería de Desmos como apoyo.



domingo, 15 de noviembre de 2015

La construcción de una caja

Los chicos con los que trabajamos Toño y yo (él trabaja con ellos sobre temas de lectura, redacción, dibujo) tienen entre 12 y 15 año. El conocimiento algebraico es practicamente inexistente por los pésimos programas educativos vigentes y porque los docentes solamente siguen alguno de los libros de texto que siguen los pésimos programas de manera muy mala.

La sesión comenzó a las 9:00 en punto, cuando apenas habían llegado la mitad de los chicos. Sin pausa, una de las niñas mayores me pidió que le explicara lo que era una ecuación cuadrática (cosas que no ha entendido en la escuela).

Comencé por explicar en el pizarrón, utilizando plumones de diferentes colores para diferenciar los elementos, la escritura general formal de un polinomio, los coeficientes, los exponentes, la variable (aquí no es incógnita). Entendido eso, que el exponente mayor se llama grado del polinomio y que el coeficiente en ese término se llama coeficiente principal. A partir de ahí que, dependiendo del grado del polinomio se hablaba de lineales (grado 1), cuadráticos (grado 2), cúbicos (grado 3), etc.

Entonces, una ecuación cuadrática, expliqué, es un polinomio de grado 2 igualado a cero:

                                            a*x^2 + b*x^1+ c*x^0 = 0

haciendo explícitas todas las potencias de x y comentando que no escribimos x^1 sino x, porque se supone que eso ya lo sabemos; ni escribimos c*x^0 porque se supone que sabemos también que x^0 = 1 y entonces c*x^0 se convierte en c*1 = c

Es decir, escribimos c*x^0 = c y la ecuación se escribe simplemente como

                                           a*x^2 + b*x + c = 0.

Agregué que las funciones cuadráticas (y expliqué la diferencia entre polinomio, ecuación y función) eran muy importantes en el estudio de los problemas de tiro parabólico, lo que ilustré con un problema sencillo, la gráfica, y todo lo que resulta de ahí.

Mientras, llegaron todos los estudiantes.

Expliqué la tarea a desarrollar y la escribí en el pizarrón:


Cada equipo de 4 disponía de una única hoja tamaño carta de papel de color rosa o verde. Si la echaban a perder no podrían tener otra. Además, sobre la mesa del profesor (por un lado del salón) había juegos de geometría, tijeras, cinta adhesiva y papel milimétrico.

Con una hoja blanca mostré que había que marcar dobleces sobre los cuatro bordes de la hoja, todos a la misma distancia de cada borde, para poder formar las esquinas correctamente, y mostré cómo doblar. Se les pidió que tomaran nota de cada cosa que iban decidiendo y haciendo para elaborar el reporte que presentarían al final de la sesión. Y comenzaron a trabajar de manera independiente, con mi supervisión constante para detectar si estaban atorados en algún punto o si estaban en otra conversación y actuar de manera pertinente.

Los tres equipos comenzaron por medir la hoja de color con mayor o menor precisión: 28 por 21.5 centímetros.


Equipo 1, muy activo. Registraron todo su proceso y lo fueron transformando para hacerlo más ágil y claro. Nunca doblaron la hoja de color para hacer tanteos. Solamente medición y cálculo del volumen en cada ocasión que cambiaban la medida que debían "recortar" de cada lado. Tampoco utilizaron el papel milimétrico. Era el equipo de los más jóvenes.
Desde el principio me dijeron que la base rectangular de la caja mediría 28 cm menos dos veces lo que tenían que doblar, por 21.5 menos esas dos veces. Pero estaba variando esa cantidad en cada cálculo. Su cuaderno se percibe, en la foto, lleno de esas explicaciones. Les pregunté que, si sabían que esa cantidad era la que hací que todo cambiara estaba variando, qué podían hacer para simplificar: "ponerle x" dijo una de las niñas. El cálculo se simplificó y sustituyeron la escritura que se observa por una tabla en la que iban registrando el valor de x y el volumen resultante, en cada caso.
El valor inicial que dieron al doblez fue de 4 cm, pero fueron a 3.5, 4.25 y 4.5 para determinar si el volumen crecía o no.  x = 4 parecía el mejor valor. Les sugerí verlo con mucho más precisión: calcularon para 4.01 y 4.02. el volumen era mayor en 4.01 y bajaba en 4.02. Les confié el secreto de Wolfram Alpha y el valor que proporciona: x = 4.019


Equipo 2, haciendo dobleces, por tanteos, con una hoja de papel milimétrico. Sin llevar un registro, a pesar de la insistencia de mi parte. En algún moment uno de ellos sugirió que mientras menor la altura y mayor la base rectangular, el volumen sería mayor. Le sugerí que pensara qué pasaría si fuera como una charola de hornear. Cayó en cuenta de su error. Comenzaron a doblar una y otra vez la hoja de color, sin registrar lo que resultaba, hasta que dejó de ser útil. La hoja de papel milimétrico la utilizaron mal, pues comenzaron a marcar las distancias a partir de los márgenes blancos y no de los bordes. Construyeron una caja, sí, pero no podían determinar si era la de mayor volumen.



Equipo 3, sin mucha participación, sin organización a pesar de a reiteración. reguntaron si la caja podría tener forma de cubo. Les pregunté si doblando la misma distancia en cada lado de la hoja obtendrían un cuadrado para la base, dijeron que no. Doblaron la hoja milimétrica para armar una caja, como se observa, y después midieron. Doblaron la hoja de color múltiples veces. No lograron avanzar.


Pasados 40 minutos el Equipo 1 dió cuenta de su trabajo y, por razones de tiempo, yo me puse en calidad de escribana para llevar el proceso al pizarrón de manera concisa. Las flechas que conectan los cálcullos, gráficos y tabla fueron parte de las respuestas a las preguntas de sus compañeros. Cuando iba a tomar la foto del pizarrón, ellos mismos se acomodaron para salir, orgullosos de su logro.


Termiamos con un regreso al punto de iinicio de la sesión: dado que en la fórmula de volumen, explícita en el pizarrón, hay tres x (una en cada factor), tenemos una función cúbica. Y que podíamos graficarla o pedirle al Wolfram Alpha que nos dijera todos sobre el polinomio cúbico involucrado. 


Sí, hay talento a pesar de lo que diga el INEE y sus exámenes que miden lo que a nadie le importa. 





La segunda sesión con los chicos del CIPEC

Ocurrió el sábado 24 de octubre.

Previamente recorté varios juegos de Tangrama, en fomi de colores, y los puse en bolsitas, cada una con algunos modelos de figuras a realizar: en las primeras se observaba con claridad la manera de disponer las siete piezas del Tangrama; en las siguientes se podían utilizar las anteriores como modelo para producir nuevas formas, sin el auxilio del trazo de las piezas; el tercer bloque era de figuras con un poco más de compejidad.






Antes de comenzar con este trabajo, en parejas, uno de los chicos me preguntó sobre el problema de la evaporación del agua, planteado al final de la sesión anterior. Había calculado hasta el día 1000 y todavía no estaba completamente seco el depósito. ¿Qué crees que pase?, le pregunté. "Nunca se termina, es infinito el número de días". Su primera aproximación al infinito potencial y actual, por supuesto.

Comentamos brevemente que se trataba de un experimento imaginado, porque en la realidad el agua no se evapora de esa manera, pero que hay procesos reales (como el tratar de descontaminar totalmente un lago, y lo que costaría) que siguen esos modelos donde el infinito se hace presente.

Entonces les expliqué la actividad con los tangramas;

  1. Son siete piezas.
  2. Se deben utilizar las siete piezas para armar cada una de las figuras.
  3. Por cada figura bien formada les pondría un sticker de colores como marca de trabajo bien hecho.
A cada equipo le entregué su bolsita de material. Les pedí que explicaran las formas de las piezas y la semejanza entre algunas (los triángulos). Agunos detalles surgieron con respecto a cuadrado  y al trapezoide que nos hizo discutir las características de un rectángulo, de un rombo, de un cuadrado, y de los paralelogramos en general. Ideas mal formdas por la falta de reflexión propia de la enseñanza tradicional: rectángulo -> ángulos rectos; rombo -> cuatro lados de la misma longitud; ¿cuadrado? manipuaron un poco las figuras para concluir que el cuadrado es un rectángulo cuyos lados son todos iguales, y que es un rombo con ángulos rectos.

Cada equipo comenzó por formar las figuras del primer bloque: acomodar las piezas según se observaba en los diagramas.  Luego, intentaron con algunos del segundo bloque, aprovechando lo que habían aprendido formando las figuras del primero. Un equipo decidió ir directamente con el tercer bloque. Comenzaron los "¡ya hicimos una!" pero, al observarla, resultaba que los ángulos que habían formado no correspondían a los del modelo, o que la orientación de un elemento no correspondía. 

Al cabo de un rato, en uno de los equipos, una chica le dijo a su compañero "fíjate en los ángulos, éste es obtuso y el que hiciste no". Ese fue el primer logro independiente: desarrollar la capacidad de detectar, sin medir, las similitudes en las figuras, y utilizarlo como argumento válido.

En total deben haber construido unas cinco o seis figuras en cada equipo, en el tiempo disponible. Ell material se lo llevaron ellos. Al iniciar la siguiente sesión uno de los chiquitos me dijo que había estado jugando en su casa y le habían salido bien más figuras.