lunes, 25 de julio de 2016

Actividad matemática en el CIPEC

La semana pasada compartí un texto sobre lo que es la actividad matemática , tomado del libro La mistyfication mathématique de Alain Bouvier, que incluye una propuesta de 50 problemas entre abiertos y ya resueltos, sin que conozcamos en cuál de estas categorías está cada uno y, evidentemente, sin soluciones (para los ya resueltos) ni hints.

El libro llegó a mis manos en 1985 mientras estaba en el IREM de la Universidad París 7 Diderot, a punto de presentar mi tesis. Desde entonces lo he utilizado en diferentes ocasiones para tratar de despertar el interés por una verdadera actividad matemática con los estudiantes desde muy temprana edad. La resistencia es enorme porque, fundamentalmente, muy pocos docentes han entrado en este terreno y ante la ausencia de guías externos que les permitan saber si “voy bien o me regreso” se sienten desconcertados y desamparados. Traduzcan eso a lo que hacen en sus cursos: puras cosas previsibles, dependiendo del grado o el momento del ciclo escolar. No vamos a encontrar una ecuación lineal con soluciones negativas si no se han introducido los números negativos y las operaciones con ellos, por ejemplo. Y con enteros, por favor. Dado que nunca estuve sujeta a semejantes cosas, decido que siempre es buen momento para comenzar la exploración.

Hacia 1986-1987, mientras desarrollábamos uno de los primeros cursos de la maestría en Educación Matemática, modalidad semiabierta, en la Universidad de Guadalajara, me tocó hacerme cargo de las sesiones de heurística. El grupo estaba integrado por maestros de matemáticas para ingeniería, maestros de matemáticas de bachillerato y estudiantes de la licenciatura en matemáticas en su último semestre. De los 50 problemas propuestos por Bouvier seleccioné un problema diferente para cada subgrupo.

Me ocuparé del problema 36, propuesto a los estudiantes de último semestre de la licenciatura en matemáticas a quienes daba gusto (OK, no) escuchar hablar de los títulos de sus tesis sobre topología algebraica y menjurjes semejantes con aire docto.

El problema 36 pide encontrar los valores que puede tomar un entero positivo n para que 4^n + n^4 sea un número primo.

Para mi sorpresa, los estudiantes comenzaron a ensayar uno a uno los números del 1 al 17 antes de establecer un hecho que a uno puede parecerle obvio. Y es justo en ese punto donde los chicos del CIPEC mostraron que lo que necesitan son oportunidades.

La sesión en el CIPEC comenzó, como de costumbre, conversando con los que llegan temprano acerca de lo que han experimentado/aprendido/disfrutado/odiado en los días previos de esa semana. Hubo homemade brownies para potenciar el arranque, recordando que debíamos de decidir a quién habría que regalarle el libro de Alicia en el país de las maravillas que Célica Cánovas nos había donado. Después de hacer una semblanza de Lewis Carroll y Alicia y una breve introducción al libro, decidí que sería para quien mostrará razonamiento lógico en sus participaciones de la mañana.

Para entrar en calor les propuse un ejercicio que aparece en un problemario de preparación para un concurso de ¡informática!: ¿cuál es el último dígito de 2013^2013 ?

Es evidente que su calculadora no puede ayudarles. ¿Cómo podrían responder?
“Multiplicamos” dijeron algunos. Inténtenlo, respondí. Pero Paola, la más pequeña de las chicas, dijo que no sabía qué significaba la escritura dada. Me fui al origen, con Diofanto y su dedicatoria de sus libros de Aritmética, explicitado lo que significa x^n para valores de n = 1, 2, 3 y 4.

Resultó que ella no era la única con esa laguna cuando al escribir x^2 algunos dijeron que el valor de x se multiplicaba por 2. No avanzamos hasta que para todos quedó claro que la n se refiere al número de veces que se toma x como factor. Unos 10 minutos.

Regresamos al ejercicio: ¿cuál es el último dígito de 2013^2013? Que cambié por ¿en qué dígito termina 2013^2013? Mucho desconcierto, por supuesto. Propuse que uno siempre puede tratar de entender con un problema más sencillo (Polya dixit) y escribí 23^23, que sigue estando fuera del alcance de las calculadoras. Hice hincapié en que no nos interesa el resultado total sino solamente el dígito que representa las unidades. Hicimos un par de ejercicios para explicitar el algoritmo de la multiplicación paso a paso y notar que las unidades del producto provienen solamente del resultado de multiplicar las unidades de los dos factores en cuestión. Por ejemplo, si multiplicamos 27 por 63 sabemos (debiéramos de) que el producto termina en 1.

Entonces propuse esa actividad a la que el niño de seis años, François Le Lionnais, se entrega en una tarde aburrida de un verano caluroso (hacia 1908).  La historia es importante porque toca una de las quejas de la mañana: “me aburro en mi casa y no me gusta estar aquí”.

Le Lionnais cuenta que en ese estado de aburrimiento comenzó escribiendo los dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 y pensó, por supuesto, que el último dígito de cualquier otro número es, necesariamente, uno de esos dígitos (Le Lionnais no incluyó al cero, de lo cual se dio cuenta unos años después, pero yo lo hice para los chicos).
Determinó que al multiplicar un número por sí mismo (desconocía, dice, que eso se denominaba "cuadrado del número") el resultado solamente pueden terminar en  0, 1, 4, 9, 6, 5, 6, 9, 4, 1, correspondiendo a cada uno de los dígitos.

En ese momento tenía las dos líneas siguientes: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
0, 1, 4, 9, 6, ,5, 6, 9, 4, 1

Se percató, entre otras cosas, de la simetría en torno al 5, lo cual lo incita a continuar con las terminaciones de los cubos:

0, 1, 8, 7, 4, 5, 6, 3, 2, 9.  

Un desorden con algunas propiedades. Intrigado, intenta con la cuarta potencia:

0, 1, 6, 1, 6, 5, 6, 1, 6, 1.  

Que es una sorpresa total por su simetría, para comenzar, y porque no son muchos los sobrevivientes, dice.

¿Qué ocurrirá con la quinta potencia? Obtiene
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

En ese momento Paola, la chiquita que no conocía el significado de la potencia, dijo en voz alta: “¡entonces hay que dividir entre 4.”
  1. Alicia en el país de las maravillas  encontró a su dueña
  2. Le pregunté qué había que dividir entre 4 (en 23^23)

Nos explicó:

23, del exponente, entre 4 da 5 y sobran 3. Así que hay que ir a la tercera fila de las cuatro creadas, y mirar la que corresponde al 3: es 7. 23^23 termina en 7.

No estaba segura de que todos hubieran entendido cabalmente lo que acababa de suceder ni la explicación. Hicimos un par de ejercicios antes de regresar a 2013^2013.

Sí: “hay que dividir entre 4” se entendió dentro del contexto de la sesión, aunque habría que ver más adelante si se produjo conocimiento.

Al dividir 2013 entre 4 tenemos 1 como residuo, lo que significa que nos fijamos en la primera fila, en la columna que corresponde al 3: es 3

Había transcurrido alrededor de una hora desde que iniciamos la sesión, y todavía disponíamos de unos 30 minutos. Propuse el ejercicio 36 de la lista de Bouvier:
encontrar los valores que puede tomar un entero positivo n para que 4^n + n^4 sea un número primo.

“No me acuerdo cuáles son los números primos”, se escuchó. Escribí la definición en una esquina del pizarrón y la lista de los primos menores que 50. Hicimos el cálculo de  4^n + n^4 para n = 0, 1, y 2 y observamos que cuando n=1 obtenemos 5 como resultado, y entonces tenemos un número primo. Replantee el problema: ¿para cuales otros valores de n se obtienen números primos?

Después de un momento se produjo el segundo momento mágico: “No funciona para los números pares” dijo Itzel, una chica que ese día festejaba su cumpleaños 17. Añadió: “siempre daría un número par” (utilizó, por supuesto, los resultados del ejercicio anterior, mostrando que lo había vuelto conocimiento útil).

Excelente, dije. ¿Cuáles nos quedan como candidatos? “Los que terminan en 1, 3, 5, 7 y 9”, dijeron.

Continuar la exploración se quedó como tarea porque se nos acabó el tiempo.

Lo sorprendente es que estos chicos no han tenido otro entrenamiento que lo que han aprendido en la escuela y lo que hacemos en las sesiones sabatinas, las cuales no apuntan a convertirlos en campeones de concursos o semejantes. De hecho, la candidata más fuerte para participar en los concursos estatales, dentro de este grupo (sí, también es niña), no se escuchó durante estos ejercicios.

La otra cosa sorprendente, y que contrasta tremendamente con la petulancia de aquellos estudiantes de matemáticas en cursos de maestría (y no debería sorprenderme) es que aquí no necesitaron probar del 1 al 17 para darse cuenta de lo que Itzel hizo notar.

Si revisamos todo este rollo, quitando el anecdotario y haciendo un ejercicio de taxonomización, nos daremos cuenta de la cantidad de conocimiento generado/recuperado/puesto a prueba en una sesión que puede resumirse en 45 minutos tal vez, pero que sería tremendamente aburrida y desgastante sin esta comunicación/comunión en la que cada uno puede participar y expresar lo que no entiende sin temores, entre iguales.

Yo salí muy satisfecha, preparando lo que será la sesión del próximo sábado la cual iniciará con un breve convivio de festejo de tres cumpleañeros. Esos momentos, para mi gusto, son lo que permiten crear el ambiente de las sesiones de trabajo.

viernes, 22 de julio de 2016

La actividad matemática

Hace tiempo preparé un material a este respecto, para un "Diplomado en Enseñanza de las matemáticas para profesores de preparatoria y la universidad", que diseñé e impartí mientras estaba a cargo de la Coordinación de Desarrollo Educativo en la Ibero Tijuana.

La presentación que acompañó a la sesión sobre lo que significa "actividad matemática" se titula "La mistificación matemática", tomada del libro de Alain Bouvier que lleva ese nombre.

Sobre la importancia de aprender a plantear y resolver problemas de matemáticas hubo también una presentación, además del documento completo con algunas referencias.

Esta semana, a propósito de las actividades que desarrollamos con los chicos del CIPEC, sumamente desestructuradas pero diseñadas ex profeso, decidí hacer una traducción libre y sintetizada del primer capítulo del citado libro de Alain Bouvier: La mystification mathématique.

Se trata, fundamentalmente, de una propuesta de cincuenta problemas dirigidos a los docentes de matemáticas y es una invitación a participar y comprender lo que es la actividad matemática. Es una invitación también a ir dando cuenta de nuestro propio proceso, el que desarrollamos cuando incursionamos en esta actividad, pero también de observar a otros docentes y hasta a algunos alumnos cuando se involucran en ella.

Los problemas, como se menciona en el documento, pueden ser problemas para los cuales todavía no se tiene una solución o ejercicios que pueden resultar sencillos para algunos. Bouvier no indica cuáles pertenecen a cada categoría. Por supuesto, no hay respuestas o hints para ellos.

Disfruten el viaje que supone La actividad matemática.