domingo, 29 de noviembre de 2015

Isoperimétricos

La sesión del 21 de noviembre, con los chiquitos del CIPEC, comenzó un poco antes de la hora habitual. A las 8:45 A.M. tres de los pequeños se presentaron conmigo para decirme que ya me estaban esperando. Las puertas las abren a las 9:00 A.M., ¿o no?, comenté. "No. Ya abrieron y ya estamos en el salón", respondieron. Subí con ellos y, aunque no estaban todos, si había un número suficiente como para dar inicio, comentando acerca de lo que es su día regular: la hora en que se levantan o los levantas, lo que hacen para ayudar en las tareas de su casa, la posición que ocupan en su familia, etc. Algunos agregaron datos sobre el empleo de sus padres, o comentarios sobre su rellación con sus hermanos. Conforme iban llegando iban participanto en esta ronde de conocernos unos a los otros. Toño y yo participamos aportando nuestras propias historias.

Hacia las 9:10 A.M. dimos inicio a la sesión de trabajo. A cada uno le entregué un trozo de listón, todos más o menos de la misma longitud. Y sobre una mesa dispuse llos materiales de trabajo que siempre llevo: escuadras, reglas, lápices, papel milimétrico, cinta adhesiva y hasta un par de compases.

Les conté la historia de Dido también llamada Elisa quien, huyendo de la codicia y crímenes de su hermano Pigmalión, llegó a la tierra de los gétulos, en Africa y pidió hospitalidad y un pedazo de tierra para instalarse. Jarbas, el rey de los gétulos le dió una piel de buey y le dijo que le daría tanta tierra como ella pudiera abarcar con esa piel. Con la tierra que pudo encerrar con esa piel, Dido fundó Cártago. Hasta ahí la historia contada a los chicos y chicas (la historia completa se encuentra aquí) .

El problema para los niños era, entonces, encerrar la mayor área posible con su listón, trabajando de manera individual. Toño y yo nos dedicamos a observar. Las fotos muestran algunos de los acercamientos que observamos:








No hay desorden, no compiten entre ellos. Cada uno sigue un pproceso diferente, al inicio, y van progresando hacia una comprensión mejor del problema y de las posibles soluciones. Hay trabajo muy en forma, intentando, midiendo, contando cuadritos, calculando. En algún momento se oyó decir a uno de los chisco "Ya me emocioné", mientras intentaba otra forma geométrica con su cordón.

Y vino luego la recuperación de los resultados del trabajo individual. Como siempre, me encargo de ir recogiendo las aportaciones de los chicos en el pizarrón, para institucionalizar e conocimiento generado. En esta ocasión, adicionalmente, proporcioné la manera de calcular la altura de un triángulo equilatero a partir del lado. El resto es trabajo del grupo. 




Al terminar esta recuperación les conté el final de la historia de Dido: cómo logró encerrar el terreno de mayor área, para la fundación de Cártago, utilizando la piel de buey que le fue entregada por Jarbas. Y la importancia de pensar de manera creativa para resolver un problema. La actividad completa tomó unos 45 minutos.

El tiempo restante lo dedicamos a planear cómo elaborar una tarjeta de Navidad utilizando Desmos. Por ejemplo, un angelito (una circunferencia para la cabeza, una parábola para el cuerpo, rectas para las alas y una elipse para el halo). Por supuesto, se trataba de una muy breve y contextualizada introducción a las cónicas.

Imaginamos (porque no disponíamos de uno) un cono de beber agua, con agua hasta la mitad. Y las superficies formadas dependiendo de la inclinación que le diéramos: circunferencia, elipse, parábola; la hipérbola fue un acto de fe.

La propuesta, entonces, fue comenzar por tratar de dibujar en Desmos una cabeza de Mickey Mouse. Para eso necesitábamos saber cómo decirle al graficador que dibujara una circunferencia. Eso nos llevó a tener que describir qué es una circunferencia: yo actuaba como centro y e largo de mi brazo como radio (sin decirlo). Primero dieron con que era importante la medida del brazo y alguno recordó que eso se llamaba radio. Pregunté qué pasaría si yo quisiera trazar otro círculo, con el mismo radio, pero diferente del primero; batallaron muy poco para concluir que tenía que cambiar mi ubicación en la cuadrícula del piso. La pregunta fue: ¿cómo se llama ese punto del que depende que el círculo sea diferente? Ciertamente no lo recordaban, y hubo que decírcelos: centro.

Con ayuda de Pitágoras (explícito), encontraron la ecuación de una circunferencia centrada en el origen. Y estuvieron muy complacido dibujando muchas concéntricas. El problema que se les quedó de tarea fue buscar la manera de trazar las orejas. La galería de Desmos como apoyo.



No hay comentarios:

Publicar un comentario