sábado, 3 de diciembre de 2016

8 de octubre en CIPEC



Después de haber trabajado con el triángulo de Pascal en la sesión del 1 de octubre, retomamos lo ya desarrollado para aplicarlo en una aproximación a la probabilidad de una variable binomial. Antes, en otras sesiones, hemos abordado los significados de las probabilidades frecuencial y clásica.

Todos los términos que empleamos se van explicitando durante la sesión. Lo que se muestra en las tomas del pizarrón son, en general, las aportaciones de los chicos después de algunas actividades con lo que tenemos a la mano: dejar caer un plumón, echar un volado, etc. 

Algunas nociones deben ser replanteadas (como el significado de un porcentaje). Ciertamente no es suficiente. Sería necesario retrabajar los conceptos y los procesos durante los días de la semana o poder retomarlos varias veces durrante un ciclo escolar completo, pero no disponemos de esos tiempos.





Al elabora su propio  diagrama de árbol cuentan las opciones siguiendo con el dedo cada rama para establecer la sucesión de eventos ocurridos,

En este caso, además, se hizo evidente la relación entre la frecuencia de los valores de la variable (número de águilas en una serie de volados) y los valores del renglón correspondiente en el triángulo de Pascal.


Para continuar con el cálculo de la probabilidad en una situación donde ambos resultados en un volado tienen la misma probabilidad:


Y luego una situación en que la probabilidad de un resultado es mayor que la del otro:


Para plantear el caso mostrado en Rosencrantz & Guildestern are dead, y la manera en la que concluyen que están muertos. La situación se simplificó de la manera descrita en el pizarrón. 


Y cerramos la sesión, y el tema, con una aplicación a su vida cotidiana: aprobar un examen al "tin marín" cuando no se ha estudiado ni se ha aprendido durante el curso.



No hay comentarios:

Publicar un comentario en la entrada