Mostrando entradas con la etiqueta pre álgebra. Mostrar todas las entradas
Mostrando entradas con la etiqueta pre álgebra. Mostrar todas las entradas

martes, 25 de octubre de 2016

Mi experiencia frente a las dificultades de los estudiantes Apuntes para un taller


 Cuando comencé a trabajar como docente de matemáticas, cinco grupos de primer grado en una secundaria técnica en la ciudad de México, sin preparación previa para desempeñarme como maestra ni interés manifiesto por semejante actividad, recuerdo (y lo he escrito muchas veces en blogsartículos sobre la docencia) que mi primera sorpresa no fue por las carencias en matemáticas que mostraban los chicos (mínimas comparadas con lo que constato ahora incluso en las universidades privadas más prestigiosas del país) sino por la incomprensión del lenguaje que supuestamente deben ser capaces de manejar. Por supuesto, las primeras manifestaciones se dieron respecto al lenguaje utilizado en matemáticas el cual, según yo, debieran conocer.
Para mí era incomprensible que los chicos no entendieran lo que significaba “máximo común divisor” por ejemplo, puesto que en ese título está contenida la definición. Me llevó un par de semanas y unos cuantos experimentos darme cuenta de que:
  1. La enseñanza por la que habían pasado los hizo memorizar nombres como etiquetas, desligados de cualquier significado
  2. Los algoritmos relacionados con esas etiquetas estaban vacíos porque nunca se construyó significado para ellos
  3. El problema de lenguaje no era solamente en lo referente a matemáticas

En la época, 1972, yo todavía era estudiante de licenciatura y nunca había tenido dificultades para comprender un texto. Sin más evidencia que lo que observaba con los chicos de los cinco grupos, hice mi primer par de estudios totalmente empíricos. Como tareas les pedí:
  • Que escribieran lo que era un día regular, entre semana, desde que despertaban hasta que se dormían
  • Que escribieran su biografía 

La composición de los grupos era heterogénea: chicos cuyos padres eran ingenieros en el Instituto Mexicano del Petróleo (situado justo frente a la escuela) y chicos hijos de campesinos que venían desde las pirámides (Teotihuacán), por ejemplo; chicos que tomaban cursos de idiomas o de música o de danza o de karate por las tardes, chicos cuyos padres (ambos) trabajaban y entonces debían llegar a sus casas a ocuparse de disponer la mesa para la comida y ayudar en tareas domésticas, chicos que trabajaban por las tardes y hasta parte de la noche para apoyar a la economía familiar. Los conflictos familiares eran igualmente variados y, en algunos casos, muy intensos.

Todo lo anterior se reflejaba en sus escritos. De las actividades desarrolladas en un día regular podía calcularse un promedio de 5 horas de televisión por día. Mientras menos favorecidos económicamente más horas de televisión al día. En la escritura de su autobiografía la falta de lenguaje y de claridad era muy evidente. En el caso más grave que recuerdo el chico se describía en el estilo de las estampitas de los héroes que se venden en las papelerías: “Fulanito de tal. Nació en ____ el día ____. Sus padres fueron ____ y ____.”

Mucho tiempo después, a través del análisis de mi propia experiencia como estudiante a lo largo de los años, de las de mis estudiantes en todos los niveles y de la de mi hijo, cuando comenzó a mostrar sus habilidades, comprendí que la adquisición temprana de un lenguaje suficiente y claro era lo que estaba en la base de la comprensión en matemáticas y cualquier otra área de estudio, en cualquier nivel. Adicionalmente, la lectura de los trabajos que encuentran relaciones de causa-efecto entre lenguaje materno y matemáticas, o los trabajos sobre la adquisición del lenguaje y la lectura de Emilia Ferreiro confirmaron mi hipótesis.

En aquel momento, y después de revisar y analizar las producciones de los chicos, lo primero que hice fue dedicar una semana por grupo (4 horas) a construir un lenguaje que nos permitiera comunicarnos sin muchos tropiezos y a crear un ambiente de confianza para que pudieran expresar sus dudas sin temor. Por mi parte, comencé a ver las series de televisión que habían mencionado en sus escritos para poder crear metáforas que les hicieran sentido.

Entonces vino la parte del lenguaje matemático: máximo común divisor significa “el mayor de los divisores comunes a dos números enteros dados”, y cada palabra tiene significado preciso. Común no significa vulgar, por ejemplo; significa que es algo que corresponde a dos o más sujetos. Batman y Robin tienen en común que aparecen en la misma serie de caricaturas (en la época); todos ustedes tienen en común que están en este grupo; etc.

Lo que puedo testimoniar es que, aunque parece un proceso lento, esta manera de trabajar permite luego avanzar con velocidad uniformemente acelerada porque se va construyendo cada concepto, cada proceso, sobre cimientos sólidos.

El proceso anterior es algo que he repetido con cada uno de los grupos, de cualquier nivel, al inicio de un curso. Establecemos reglas de convivencia que nos permitan trabajar en un ambiente de confianza y respeto, además.

Por otro lado, en lo que concierne a los contenidos de los cursos, lo que encuentro muy necesario es tomar en cuenta el pasado académico del estudiante (del grupo y de las individualidades más notables) para construir un puente que les permita llegar al punto de inicio del curso. En las condiciones actuales, tomando como punto de partida los lamentables programas educativos de todos los niveles, es prácticamente imposible esperar que un chico que se inicia en el álgebra pueda tener éxito sin un antecedente numérico.

Hay que tomar en cuenta que el conocimiento pitagórico sobre los números (Libro II de los Elementos de Euclides) se sitúa hacia los siglos V y VI antes de Cristo, mientras que el álgebra desarrollada por Al-Jwarizmi data del siglo IX después de nuestra era y el desarrollo del álgebra muy en la forma en que pretendemos que la aprendan los alumnos en el bachillerato se desarrolló en Europa, en Italia y Francia notablemente, a partir del siglo XV.

El desarrollo de la pura noción de numero negativo tiene una duración de alrededor de quince siglos, de acuerdo al análisis de Georges Glaeser en La epistemología de los números relativos[1]: “desde la época de Diofanto hasta nuestros días” dice. Porque una cosa es manipular los números (así sea con precisión, como ocurría con los matemáticos incluso notables) y otra cosa es comprender absolutamente el concepto.

Glaeser comenta que “Numerosos son los maestros que no sospechan que el aprendizaje de las reglas de los signos puede comportar dificultades.” Y suponen que es un problema del alumno. Incluso, dice: “Hans Freudenthal (uno de los matemáticos y educadores en matemáticas que más han contribuido a establecer las dificultades en el aprendizaje de esta materia, consignado en su obra clásica Mathematics as an Educational Task[2] y fundador de la revista especializada Educational Studies in Mathematics[3]) consagra 160 páginas del libro a examinar muchas de las dificultades que conlleva el aprendizaje de los números, y sin embargo apenas menciona la regla de los signos.”
“Uno se explica fácilmente este olvido sorprendente. En la época en la que él escribía esta obra, Freudenthal escogía los temas de sus análisis didácticos de entre sus recuerdos personales. Ahora bien, ningún matemático de su generación (ni de las nuestras) guarda recuerdo alguno de haber sido turbado por la regla de los signos.”

Sin embargo, Piaget (muy sensible a las observaciones que hace sobre los niños), consagra varias páginas de su obra Introduction à l’épistémologie génétique [4] a las dificultades provocadas por los números negativos.

Las señales de las dificultades que han enfrentado los estudiantes con esta noción se encuentra, entre otros casos, en la autobiografía de Stendhal, La vida de Henry Brulard. La parte donde hace referencia a estas dificultades la resumí en una especie de comic:



Es decir: no es tan sencillo como lo hacen parecer los programas educativos que parten del profundo desconocimiento de quienes los redactan. Y los profesores que creemos que lo más importante es terminar un programa, aunque los alumnos no aprendan ni un ápice, no ayudamos en ningún sentido a la formación o el interés por los estudiantes en la materia o en su aplicación para resolver problemas que tengan sentido.

Se trata, pues, de crear las condiciones y los apoyos para que el estudiante comprenda y no para que apruebe un curso sin sentido que solamente sirva para cumplir con indicadores escolares e institucionales. O no nos quejemos de lo que ayudamos a crear.




[1] Glaeser, Georges. Epistémologie des nombres relatifs. Recherches en didactique des mathématiques. Vol 2/3.  La pensée sauvage. 1981. Traducción al español de Marco Antonio Valencia, Fernando Ávila y Blanca M. Parra, publicada por la Sección de Matemática Educativa del CINVESTAV, en 1983.
[2] Freudenthal, Hans. Mathematics as an Educational Task. D. Reidel Publishing Company, Dordretcht-Hollland. 1973.
[3] Educational Studies in Mathematics. An International Journal. Editor-in-Chief: Merrilyn Goos. Springer.
[4] Piaget, Jean. Introduction à l’épistémologie génétique. 1. La pensée mathématique. Presses Universitaires de France. 1973. Pag 110 – 115 : Le nombre négatif et le zéro.

viernes, 7 de octubre de 2016

Reinicio en el CIPEC

El sábado 1 de octubre retomé las actividades con los chicos del CIPEC después de casi dos meses de ausencia. Terminó un ciclo e inició otro; algunos chicos se fueron, pero llegaron nuevos. Y, como siempre, la experiencia fue muy satisfactoria.

Dado que no hay manera de retomar desde el punto anterior se hizo necesario recomenzar, pero sin repetir lo que algunos ya habían visto. Así, volvimos a abrir el cajón de la aritmética encaminada al álgebra elemental. La propuesta: construir el triángulo de Pascal hasta la décima potencia, sin ninguna explicación adicional.

La secuencia de fotos muestra el proceso.

Por razones que no entendí decidieron escribir sobre sus rodillas, a pesar de la invitación a utilizar las mesitas (se organizan según las necesidades) o a trabajar sobre el piso, como lo han hecho en ocasiones anteriores.



Los primeros pasos y la invitación a continuar hasta la potencia 10, con la mención explícita de la potencia 0



Después de ver las producciones de los chicos y de observar los errores cometidos, escribí las líneas siguientes, le puse nombre al objeto y compartí la sugerencia para saber más. Apenas son visibles las líneas que marqué para ayudarlos a visualizar el patrón (una de las fuentes de error más frecuentes en matemáticas es no reconocer los patrones) y organizar su trabajo:


Siguió registrar las observaciones que fueron haciendo mientras construían el triángulo:




Para darle sentido algebraico, a continuación. Comenzamos con una brevísima presentación de Euclides:


Y el álgebra geométrica del libro II de los Elementos


Para establecer el cuadrado del binomio



Y la relación de los coeficientes con los números en el renglón 2 del triángulo de Pascal



Y saltar al cubo del binomio, utilizando meramente los coeficientes dados por el tercer renglón del triángulo



 Y la cuarta potencia 


 Para terminar mostrando un ejemplo de aplicación para calcular cualquier potencia de cualquier binomio, siempre y cuando tengamos en cuenta las reglas de los signos y las de los exponentes.
Y hacer notar uno de los errores más comunes entre los alumnos, cada vez que tienen que calcular el cuadrado de un binomio.



Mañana (sábado 8) continuaremos con este tema en un contexto ligeramente distinto: Probabilidad.









domingo, 15 de noviembre de 2015

La construcción de una caja

Los chicos con los que trabajamos Toño y yo (él trabaja con ellos sobre temas de lectura, redacción, dibujo) tienen entre 12 y 15 año. El conocimiento algebraico es practicamente inexistente por los pésimos programas educativos vigentes y porque los docentes solamente siguen alguno de los libros de texto que siguen los pésimos programas de manera muy mala.

La sesión comenzó a las 9:00 en punto, cuando apenas habían llegado la mitad de los chicos. Sin pausa, una de las niñas mayores me pidió que le explicara lo que era una ecuación cuadrática (cosas que no ha entendido en la escuela).

Comencé por explicar en el pizarrón, utilizando plumones de diferentes colores para diferenciar los elementos, la escritura general formal de un polinomio, los coeficientes, los exponentes, la variable (aquí no es incógnita). Entendido eso, que el exponente mayor se llama grado del polinomio y que el coeficiente en ese término se llama coeficiente principal. A partir de ahí que, dependiendo del grado del polinomio se hablaba de lineales (grado 1), cuadráticos (grado 2), cúbicos (grado 3), etc.

Entonces, una ecuación cuadrática, expliqué, es un polinomio de grado 2 igualado a cero:

                                            a*x^2 + b*x^1+ c*x^0 = 0

haciendo explícitas todas las potencias de x y comentando que no escribimos x^1 sino x, porque se supone que eso ya lo sabemos; ni escribimos c*x^0 porque se supone que sabemos también que x^0 = 1 y entonces c*x^0 se convierte en c*1 = c

Es decir, escribimos c*x^0 = c y la ecuación se escribe simplemente como

                                           a*x^2 + b*x + c = 0.

Agregué que las funciones cuadráticas (y expliqué la diferencia entre polinomio, ecuación y función) eran muy importantes en el estudio de los problemas de tiro parabólico, lo que ilustré con un problema sencillo, la gráfica, y todo lo que resulta de ahí.

Mientras, llegaron todos los estudiantes.

Expliqué la tarea a desarrollar y la escribí en el pizarrón:


Cada equipo de 4 disponía de una única hoja tamaño carta de papel de color rosa o verde. Si la echaban a perder no podrían tener otra. Además, sobre la mesa del profesor (por un lado del salón) había juegos de geometría, tijeras, cinta adhesiva y papel milimétrico.

Con una hoja blanca mostré que había que marcar dobleces sobre los cuatro bordes de la hoja, todos a la misma distancia de cada borde, para poder formar las esquinas correctamente, y mostré cómo doblar. Se les pidió que tomaran nota de cada cosa que iban decidiendo y haciendo para elaborar el reporte que presentarían al final de la sesión. Y comenzaron a trabajar de manera independiente, con mi supervisión constante para detectar si estaban atorados en algún punto o si estaban en otra conversación y actuar de manera pertinente.

Los tres equipos comenzaron por medir la hoja de color con mayor o menor precisión: 28 por 21.5 centímetros.


Equipo 1, muy activo. Registraron todo su proceso y lo fueron transformando para hacerlo más ágil y claro. Nunca doblaron la hoja de color para hacer tanteos. Solamente medición y cálculo del volumen en cada ocasión que cambiaban la medida que debían "recortar" de cada lado. Tampoco utilizaron el papel milimétrico. Era el equipo de los más jóvenes.
Desde el principio me dijeron que la base rectangular de la caja mediría 28 cm menos dos veces lo que tenían que doblar, por 21.5 menos esas dos veces. Pero estaba variando esa cantidad en cada cálculo. Su cuaderno se percibe, en la foto, lleno de esas explicaciones. Les pregunté que, si sabían que esa cantidad era la que hací que todo cambiara estaba variando, qué podían hacer para simplificar: "ponerle x" dijo una de las niñas. El cálculo se simplificó y sustituyeron la escritura que se observa por una tabla en la que iban registrando el valor de x y el volumen resultante, en cada caso.
El valor inicial que dieron al doblez fue de 4 cm, pero fueron a 3.5, 4.25 y 4.5 para determinar si el volumen crecía o no.  x = 4 parecía el mejor valor. Les sugerí verlo con mucho más precisión: calcularon para 4.01 y 4.02. el volumen era mayor en 4.01 y bajaba en 4.02. Les confié el secreto de Wolfram Alpha y el valor que proporciona: x = 4.019


Equipo 2, haciendo dobleces, por tanteos, con una hoja de papel milimétrico. Sin llevar un registro, a pesar de la insistencia de mi parte. En algún moment uno de ellos sugirió que mientras menor la altura y mayor la base rectangular, el volumen sería mayor. Le sugerí que pensara qué pasaría si fuera como una charola de hornear. Cayó en cuenta de su error. Comenzaron a doblar una y otra vez la hoja de color, sin registrar lo que resultaba, hasta que dejó de ser útil. La hoja de papel milimétrico la utilizaron mal, pues comenzaron a marcar las distancias a partir de los márgenes blancos y no de los bordes. Construyeron una caja, sí, pero no podían determinar si era la de mayor volumen.



Equipo 3, sin mucha participación, sin organización a pesar de a reiteración. reguntaron si la caja podría tener forma de cubo. Les pregunté si doblando la misma distancia en cada lado de la hoja obtendrían un cuadrado para la base, dijeron que no. Doblaron la hoja milimétrica para armar una caja, como se observa, y después midieron. Doblaron la hoja de color múltiples veces. No lograron avanzar.


Pasados 40 minutos el Equipo 1 dió cuenta de su trabajo y, por razones de tiempo, yo me puse en calidad de escribana para llevar el proceso al pizarrón de manera concisa. Las flechas que conectan los cálcullos, gráficos y tabla fueron parte de las respuestas a las preguntas de sus compañeros. Cuando iba a tomar la foto del pizarrón, ellos mismos se acomodaron para salir, orgullosos de su logro.


Termiamos con un regreso al punto de iinicio de la sesión: dado que en la fórmula de volumen, explícita en el pizarrón, hay tres x (una en cada factor), tenemos una función cúbica. Y que podíamos graficarla o pedirle al Wolfram Alpha que nos dijera todos sobre el polinomio cúbico involucrado. 


Sí, hay talento a pesar de lo que diga el INEE y sus exámenes que miden lo que a nadie le importa.