viernes, 7 de febrero de 2014

Un día provechoso

Me levanté temprano para ir a caminar al Parque Metropolitano, que se ha vuelto mi lugar favorito. Solamente fueron cuatro kilómetros, dos de ida y dos de regreso, porque tenía previsto seguir algunos cursos en WizIQ. Solamente seguí dos de los cinco programados porque terminando el segundo comenzó la transmisión de la inauguración de los Foros de consulta nacional para la revisión del modelo educativo, en la SEP. 

Fue interesante escuchar la plática de Olac Fuentes, con cuyas apreciaciones coincido. No es novedad, por supuesto. Algunas de las ideas y afirmaciones que compartió habían surgido antes, en mi trabajo con profesores.

El asunto de las competencias (en la definición dada en el Marco Conceptual del SUJ, por ejemplo) y la imposibilidad de evaluar el desarrollo de actitudes y valores es un tema que apareció en cada uno de los talleres con profesores. No se pueden evaluar durante un curso y, a veces, ni siquiera a lo largo de toda una carrera. Se verán en la práctica profesional y en la actuación como personas fuera de las aulas.

Por otra parte, en la misma línea de evaluar el desempeño, los estándares que se plantean para el nivel básico están tomados de algún programa académico de licenciatura.

En Tijuana, un grupo de unos seis docentes de primaria publica, me pidieron un taller para ayudarlos a diseñar actividades para sus alumnos. Me explicaron su programa en el área de español: para tercer o cuarto grado (no recuerdo) los alumnos tenían que aprender a distinguir entre cuento y leyenda, por ejemplo, pero también tenían que aprender a hacer resúmenes, y la lectura de comprensión. Comenzamos organizando alguna actividad donde esos elementos se articularan en una experiencia diferente y disfrutable, y todos los peros comenzaron a aparecer: no podemos crear espacios en el aula (sugerí el piso, con cojines aportados por cada alumno); no podemos mezclar las unidades (por el control administrativo), …. Y aparecieron las deficiencias de los alumnos.

Les pedí la definición de las metas/objetivos del área de español para cada grado. No pudieron explicitarlos. Sabían cuáles eran las metas para el ciclo de educación primaria completo; las que resultaron ser equivalentes a las que en ese momento se contemplaban para la competencia de comunicación oral y escrita de la Ibero (ya hasta esas son menos ambiciosas). Al mismo tiempo, la Cartilla de Educación Básica (las normas para la evaluación y aprobación de los cursos, esencialmente) que estuvo vigente hasta 2012, asumía que un niño podía aprobar el tercer grado sin saber leer.  Grandes contradicciones y ninguna guía valida ni para los padres de familia ni para los docentes.

Por otro lado, la elaboración de planes y programas de estudio depende el “experto” a cargo. Recuerdo la elaboración de los programas para la educación primaria hacia 1990/91. Estaba yo de sabático en la UNAM y compartía la oficina con quien había sido designado para elaborar lo correspondiente al área de matemáticas. Era un estudiante de posgrado en Matemática Educativa del CINVESTAV (donde yo trabajaba y estaba a punto de renunciar). Hizo una mezcla de todo lo que como estudiante había leído; una verdadera indigestión de posturas y textos franceses y estadounidenses. Los alumnos llegarían a tercero de primaria sin saber operar con los números enteros, porque habrían pasado un buen rato seriando y clasificando para conceptualizar al número. Estrategias abandonadas hacia un largo rato por los franceses, por lo menos. Y, por supuesto, desconociendo terriblemente las condiciones educativas y la realidad de los niños en este país.

Afortunadamente, supongo, fueron los años de reformas al vapor que eran sustituidas inmediatamente. Lamentablemente tampoco las que le siguieron fueron hechas con mucho más sentido.

Muy recientemente salió a cuento el libro Matemáticas 100 horas (primero de secundaria) que dio origen a Matemática Educativa y el cual me tocó experimentar en mi clase, tutorear a una maestra en una escuela de Ciudad Neza, donde se piloteaba, y luego reescribir buena parte, imprimir, compaginar y distribuir. Un verdadero proyecto. Un libro mítico, me dijeron.  El desorden aparente en el diseño de los programas de matemáticas para los últimos grados de la primaria se inspira en la estructura de este libro, me comentaron. Excepto que si no se conoce el origen y el sentido es difícil entender y transmitir su estructura en espiral, muy brunneriana, a docentes acostumbrados a trabajar de manera lineal. Afortunadamente lo tenemos en PDF y se puede comentar y discutir con los interesados.


De todos los defectos de los planes y programas, y de su elaboración, habló Olac. Cerró con una metáfora: "Se dice que el dibujo de un camello es el resultado de un comité de burócratas que se reunió para pintar el retrato de un conejo".

Después de esta plática, la gente paso a las mesas de trabajo, en el D.F. Esperaremos a que nos toque en esta zona.

sábado, 23 de noviembre de 2013

Fin de semestre = preparación de examines finales

Uno diseña su curso, de a buenas.  ¿Qué necesitan aprender mis alumnos? ¿Qué necesitan saber y saber hacer antes de entrar a un curso de cálculo diferencial e integral? Y va construyendo experiencias, actividades, ejercicios mientras monitorea el avance para ir reforzando los aprendizajes a través de mapas mentales, narraciones, comics explicativos, diagramas de flujo, dibujos donde jueguen con las curvas de manera creativa, con trabajo individual, o en parejas, o en equipos, etc.

Cierto, antes de iniciar el semestre nos habían reunido para comentarnos que habría menos grupos de Cálculo I (diferencial e integral) que los que habían supuesto, dado el nivel de conocimientos de los alumnos de primer ingreso, medido con algún instrumento. A cambio, habría varios cursos de Prerrequisitos. Cuatro profesores fuimos asignados a un número igual de grupos: tres profes de asignatura y uno de tiempo.

¿Propuestas para ayudar a los jóvenes a alcanzar el nivel requerido?  “Que sigamos un mismo libro de texto porque los alumnos deben acostumbrarse a tener un libro y seguirlo” dijo el profe de tiempo. Supongo que alcé las cejas, todavía no aprendo a poner cara de palo y no tenía ni bufanda ni abanico para cubrirme (son mis recursos cuando anticipo desacuerdos que no puedo ocultar facialmente). “Yo propongo que utilicemos el Baldor” dijo uno de los profes de asignatura. Y aquí sí fue más que alzar las cejas: ¡No! Dije. De entrada es pésimo como libro de texto y, en todo caso, es de nivel de secundaria. La propuesta de llevar un libro de texto quedó registrada y se acordó que fuera el Stewart de Precálculo.

No hubo más acuerdos registrados, y no tuvimos ninguna comunicación sobre el avance de los grupos entre los profesores. Cada uno hizo del programa lo que pensó que era adecuado, supongo. En mi caso, reestructuré el programa dentro de lo posible, porque el formato que se entrega a los alumnos y se registra oficialmente está predeterminado, incluyendo los puntos de corte para cada uno de los dos exámenes parciales. Cuando me dicen que la academia decidió eso, no tengo ni idea de a qué o a quiénes se refieren. Pero sí me queda claro que no atiende a nada de didáctica o pedagogía.

Como quiera, mi curso fue y vino entre los temas, forzando la revisión constante y la interrelación de los conceptos y los procesos. Terminamos hace una semana con un grupo de alumnos que no manejan un formulario porque no lo necesitan, pero que saben utilizar el Teorema de Pitágoras en diferentes situaciones y de manera correcta, que saben lo que significa la pendiente de una recta y la pueden interpretar para trazar una recta desde cualquiera de sus puntos, que saben utilizar el álgebra para determinar las características de una función algebraica (excepto lo que depende del cálculo) y que se sienten seguros. A veces trabajamos con papel milimétrico y papel de doblar solamente, a veces utilizamos Desmos o GeoGebra o Wolfram Alpha, dependiendo del problema. Desarrollaron una muy valiosa independencia e interactuaron cuando lo creyeron necesario para resolver sus dudas.

La semana anterior comenzamos la revisión de los ejercicios de repaso y de autoevaluación de cada capítulo del 1 al 10 de libro de texto (que no utilizamos consistentemente durante el curso), anticipando que el examen sería departamental. Ellos propusieron los ejercicios que querían resolver y trabajaron en un ambiente muy relajado. Así terminamos la revisión de los primeros cinco capítulos, y nos queda la siguiente semana para terminar con calma.

Hace una semana los profesores volvimos a reunirnos, ahora para decidir sobre el examen y su elaboración. Previamente, la coordinadora nos había pedido llevar una propuesta a la reunión.  La primera “agresión” vino del profe de tiempo: “porque hay maestros que no llevaron el libro de texto, dicen sus alumnos”. Supongo que era conmigo porque ya antes me había encontrado en el pasillo para preguntarme si al grupo de Bionanotecnología (no de prerrequisitos) yo le había asignado una tarea con ejercicios “raros” que no correspondían al libro de texto, porque él les estaba dando asesoría y eso le habían llevado. Pero no, yo no había dejado nada.

Mi propuesta de examen toma un ejercicio integral (que comprende diversos conceptos) de cada uno de los capítulos del libro. Por ejemplo:

Ejercicio 17, página 136, Capitulo 1.
Dados P(-3,1) y Q(5, 6), puntos en el plano coordenado:
a)      Grafique P y Q
b)      Calcule la distancia entre P y Q
c)       Determine el punto medio del segmento PQ
d)      Determine la pendiente de la recta que pasa por P y Q
e)      Encuentre la bisectriz perpendicular a la recta que contiene a P y a Q
f)       Encuentre la ecuación de la circunferencia para la cual el segmento PQ es un diámetro

Otro grito del profesor, respecto al ejercicio  6, página 740, capítulo 9:
Un contratista de vivienda subdividió una granja en 100 lotes para construcción. Diseñó dos tipos de casas para estos lotes: tipo colonial y tipo rancho. Una casa colonial requiere de 30000 dólares de capital  y producirá una ganancia de 4000 dólares cuando se venda. Una casa tipo rancho requiere de 40000 dólares de capital y producirá una ganancia de 8000 dólares cuando se venda. El contratista cuenta con 3.6 millones de dólares de capital. ¿Cuántas casas de cada tipo deberá construir y vender para maximizar la ganancia?

“Eso no está en el programa”. Tranquilamente respondí: es una aplicación de rectas, intersecciones, desigualdades y evaluación. “Pero no está en el programa”. La coordinadora secundó mi comentario. Me quedó claro que sus alumnos no podrían resolver algo de ese tipo, tal vez ni siquiera plantearlo.

Las propuestas de los tres profesores abundan en factorizaciones y simplificaciones que, según yo, están ya incluidas en muchos de los otros ejercicios de graficación de funciones y cónicas para las cuales hay que determinar todos sus elementos, y en los ejercicios sobre funciones exponenciales y logarítmicas.

Varios de los ejercicios propuestos en el examen del profe de tiempo habían sido ya propuestos y resueltos por los alumnos de mi grupo, pero no dije nada. 

Otros exámenes carecen de estructura y es imposible vislumbrar el tipo de aprendizaje que buscan “medir”. Todos adolecen de una terrible mala redacción (y no los copiaron literalmente del libro de texto que tanto defienden) y algunos también de faltas de ortografía.

El siguiente punto de desacuerdo, no manifestado de frente (y eso es lo que más me molesta) fue sobre la fecha del examen. Un profesor y yo habíamos acordado con los alumnos (que hicieron las propuestas) desde el primer día de clase, que el examen sería el 6 de diciembre, siendo la fecha límite para entregar calificaciones el 9. Otro profesor había acordado con su grupo que el examen sería en la semana que inicia el 2 de diciembre. El profe  de tiempo dijo que el calendario marca que el fin de cursos es el 3 de diciembre. 

La coordinadora dijo que no había problema en que el examen (único) lo hiciéramos todos el 6, a la misma hora, cada quien con su grupo.  Y salimos con la tarea de revisar las cuatro propuestas, elaborar un único examen a partir de ellas y presentarlo el viernes pasado. Pero las propuestas tardaron en llegar. ¡La última la recibí el jueves! Y el viernes no hubo quorum para la reunión (yo me quedé dormida). Un último acuerdo: se utilizará la calculadora pero “queda prohibido cualquier otro aparato de comunicación o tecnología”.

Por la tarde del viernes recibimos un comunicado de la coordinación: cada quien hace su examen y se aplicará a más tardar el 3, excepto que los alumnos estén TODOS de acuerdo (en el grupo de cada uno) en hacerlo posteriormente.

Me queda claro que una de las causas de la inmovilidad y el anquilosamiento de una institución se da a través de los profesores que tienen estatus o privilegios. Una de las razones por las cuales no soy parte de la Asociación Nacional de Profesores de Matemáticas, aunque en ella participe gente muy valiosa.

Veremos qué dicen los alumnos el lunes. De entrada ya habían dicho que Desmos es una calculadora graficadora. Y estoy de acuerdo. Y saben que los ejercicios que propongo requieren más que solamente hacer operaciones, y para eso no hay más que comprender lo que hacen y para qué lo hacen. Y tengo mucha confianza en que  al menos el 90% está bien preparado. 

La siguiente imagen muestra una respuesta muy válida a un ejercicio muy mal planteado. Just saying!





domingo, 10 de noviembre de 2013

Circunferencia y Elipse

Terminamos la semana con el grupo de Prerrequisitos B, que ya está muy definido para las tres semanas que restan de curso.

La experiencia definiendo la curva que uno espera que sea la que mejor conocen, mostró que esa esperanza no se cumple. Y es grave que los ciclos anteriores no se ocupen de ayudar a los alumnos a clarificar ideas y conceptos.

La situación propuesta, más o menos, fue la siguiente: A ustedes les toca admnistrar la cancha del estadio del equipo León. Contratan a una persona para que pinte la circunferencia en el centro de la cancha. Escriban las instrucciones.

Lo que recibí como instrucciones:

  • Es una cónica que consta de 360 grados, también es una figura geométrica
  • Una circunferencia es una figura geométrica que tiene una sucesión de puntos que se juntan de manera que no tienen extremos. Es una sucesión de curvas
  • Es un segmento en el cual todos sus puntos están a la misma distancia del centro y es una figura cerrada
  • Es una curva cerrada donde sus puntos están a la misma distancia del centro
  • Es lo que limita al círculo
  • Es un círculo con el que podemos saber los ejes trazándolos desde enmedio
  • Una forma perfectamente redonda
  • El conjunto de ángulos que sumados dan 360 grados y se calcula con Pi radianes. Conjunto de líneas rectas
  • Una curva que pasa por sí misma
  • Una figura en el plano donde todos sus puntos están a la misma distancia del centro
  • Es una curva donde en el centro hay un punto. Puede ser una cuerda, círculo
  • Es un círculo, algo redondo que donde empieza termina
  • Figura geométrica de un sólo lado cerrada. El perKmetro o la parte de afuera de un círculo
  • Son dos arcos iguales uniidos por sus dos orillas que tiene un radio y un diámetro y una cuerda
  • Es una figura geométrica que se compone de varios elementos como radio, cuerda, diámetro, etc. la cual tiene un centro definido
  • Es el término empleado para hacer referencia a un objeto circular o similar
  • Curva que mide 360 grados y regresa a su origen
  • Una línea unida por sus extremos que crea un círculo
Fui leyendo una a una y ellos estuvieron de acuerdo en que el pobre empleado iba a tener dificultades para llevar a cabo su tarea. Finalmente tomaron las definiciones que hace referencia al centro y al radio para completar una instrucción correcta. Con eso y el Teorema de Pitágoras, comenzamos a desarrolar lla ecuación ordinaria de la circunferencia con centro en el punto (h, k) y radio r. Sin problemas. 


Los ejercicios que propusimos posteriormente se comentaron en la entrada anterior.

Con esa experiencia, para la sesión del viernes 8 de octubre (en que además la clase se empalmaba con el partido de fútbol entre la Selección Sub 23 y Nigeria), les pedí llevar un cartón, dos tachuelas y un cordón.

Utilizamos el método del jardinero para trazar la elipse (¡les faltan habilidades manuales!) y con  esos instrumentos determinaron
a) la medida del eje mayor
b) la propiedad que define a la elipse como lugar geométrico

Pasar a la ecuación en forma ordinaria ya no fue difícil. Falta ver lo que quedó, a través los ejercicios que propondré mañana!



martes, 5 de noviembre de 2013

Avances, avances

Y ya se va definiendo el resultado del grupo de Prerrequisitos B. Las bajas oficiales y las que simplemente se dan por la ausencia de alumnos que parecían venir a clase a ver si pescaban algo. El lado derecho del salón concentra, desde el incio, a la mayoría de los alumnos genuinamente interesados en su formación. En el lado izquierdo apenas unos cuatro están involucrados.

Ayer utilizamos el Teorema de Pitágoras para construir la ecuación de la circunferencia con centro en algún punto del plano, después de una divertida actividad acerca de la descripción de la circunferencia. Sorprende que de todo el grupo (ayer estaban todos) solamente tres tengan claro lo que caracteriza a esa curva. Luego pondré la liga a las diferentes descripciones.

Hoy, las actividades eran de dibujo. En las fotos se aprecian los ejercicios propuestos y a los alumnos trabajando en ellos.

Ejercicio I: Dibujar una figura semejantes a la que se ve en el lado izquierdo de la foto, proporcionando las ecuaciones de las curvas:


El ejercicio III está en el lado derecho de la misma foto.

Ejercicio II: Dibujar las curvas dadas.

Lo cual resulta en un monito de nieve, con sombrero. Es muy fácil darse cuenta de si lo hicieron bien o no.

Los alumnos trabajaron de manera autónoma, apoyándose entre ellos para resolver sus dudas. Al término de cada ejercicio recibían un "certificado" de cumplimiento, concretado en un sticker pegado al lado de su dibujo.




Lo mejor fue al final, cuando Giovanna (en la segunda foto) comentó lo bien que se siente cuando uno ha entendido algo.

Una tarea que tienen: hacer un dibujo creativo en Desmos, utilizando cualquier tipo de función o cónica. El autor del dibujo que tenga más votos recibirá un estuche (mini) de dibujo. 

jueves, 24 de octubre de 2013

Caminamos, Sancho

A pesar de las quejas de algunos alumnos o el despiste de un par de alumnas, pareciera que avanzamos.
La clase de hoy con el grupo de Prerrequisitos B comenzó con el plano y sus cuadrantes. Y lo que se derivará de ahí en cursos futuros:

  • Vectores en el plano y en el espacio (Física)
  • Superficies en tres dimensiones
  • Programación lineal = Investigación de operaciones


Con esa perspectiva, establecimos una desigualdad lineal y coloreamos las dos regiones separadas por la recta involucrada. Con ello, desarrollamos el ejercicio siguiente:

Dadas 
y ≥ 2x - 3  
y ≤ -x + 2
y ≤ x - 4
  • Colorear la región donde se cumplen las tres desigualdades
  • Determinar las coordenadas de los vértices de esa región
  • Calcular las longitudes de los lados del polígono (la región)
  • Calcular las medidas de los ángulos del interior del polígono 
  • Calcular el perímetro del polígono
  • Calcular el área del polígono 


Herramientas: el plano y el Teorema de Pitágoras, además de lo que aprendieron de trigonometría en las semanas anteriores. Ninguna fórmula y sí la exigencia de presentar los resultados en valores precisos (racionales y radicales)

Las regiones se pueden visualizar en Desmos: https://www.desmos.com/calculator/lszgwesgit
Los alumnos desarrollaron a mano los trazos y cálculos, trabajando colaborativamente cuando lo sintieron necesario.

A estas alturas, solamente dos alumnas no tienen todavía idea de dónde están en el curso. 

lunes, 21 de octubre de 2013

Un semestre por demás interesante

Diez semanas han transcurrido desde que iniciaron los cursos en la universidad. Tres grupos con prácticamente el mismo programa, extensísimo. El núcleo se compone de
  • Algebra superior (de números reales y desigualdades a los teoremas del Factor y Fundamental del Algebra)
  • Trigonometría plana, incluyendo el trabajo con identidades
  • Geometría analítica 
  • Funciones y sus gráficas (algebraicas y trascendentes tempranas)
  • Y las aplicaciones de todo ello
Ese nucleo compone el curso de Prerrequisitos B (curso largo), para alumnos de ingenierías (excepto Bionanotecnología) que no tiene créditos, se califica como Acreditado o No acreditado, y está programado en cuatro sesiones de dos horas por semana.

También es el curso para los alumnos de Bionanotecnología, que si es materia currricular y que está programado en dos sesiones de dos horas por semana.

Para los alumnos de Arquitectura se incluyen, además, Sistemas de ecuaciones lineales y métodos matriciales, y Cálculo diferencial e integral. El curso es curricular y está programado en dos sesiones de dos horas a la semana.

A pesar de que es prácticamente el mismo curso, el rendimiento es muy distinto. Sorprendentemente tienen mejor desempeño los alumnos de los cursos con menos horas de clase a la semana.  Una de las razones, especulo, es el hecho de que para los alumnos de Prerrequisitos B el curso no aparecerá en su kardex. Y de que, independientemente de si el desempeño es apenas suficiente o extraordinario, la nota que verán en sus certificados será la misma: Acreditado. 

En este grupo de Prerrequisitos B, la mayor parte son alumnos que llegan a la universidad asumiendo las mismas actitudes que en el bachillerato (a pesar de que vienen de diferentes bachilleratos): es un asunto de enseñanza pero no de aprendizaje (el maestro que recite y yo copio) y no están dispuestos a participar de las actividades de la clase. Todavía a estas alturas, cuando quedan escasas seis semanas para terminar el curso, muchos de ellos no traen a la clase los materiales necesarios para trabajar y el 70% del grupo no ha ingresado a Edmodo (donde se registran las actividades del curso) para enterarse de lo que se ha desarrollado, las tareas y otras actividades. Suponen que el acceso a Wikipedia los salva de las tareas en clase y fuera de ella. Algunos asisten de manera irregular, otros se duermen en clase (no desayunan, por ejemplo). 

De los que participan activamente hay dos tipos: el entusiasta que, a pesar de las repetidas fallas, sigue tratando de aplicar "reglas de tres" para cualquier cosa; y el chico que siente ser más listo que los demás, que se resiste a que el resto del grupo lo vea "arrastrando el lápiz" y trata de hacer todos los razonamientos y cálculos en su cabeza, sin lograrlo la mayoría de las veces.

En todo eso veo mucho de las prácticas a las que los maestros los han acostumbrado en los ciclos anteriores. Y una enorme resistencia a abandonar aquellas que tal vez funcionaron bien en cursos muy tradicionales. 

En los otros dos grupos han ocurrido algunos desacuerdos, especialemente al inicio del curso. 

En el grupo de Bionanotecnología, algunos alumnos tenían actitudes de rigidez extrema: "no queremos que hable de experiencias que ocurran fuera del grupo o reflexiones personales" dijo una alumna; "no me gustan los cursos en línea" dijo un alumno (y no entendí a qué se refería cuando hice la encuesta anónima para sondear el ambiente de la clase). Otros alumnos se resistieron al apoyo extraclase, aun cuando se habían ya reconocido las dificultades que experimentarían en un curso tan denso. 

El asunto de "cursos en línea" se aclaró en una explosión del alumno dentro de la clase: no le gusta tener que recurrir a Edmodo para revisar lo que se ha hecho, los ejercicios adicionales que se proponen o los materiales de apoyo o de interés para el grupo.

Y sin embargo, en la sesión de Evaluación Intermedia que tuvimos hoy, el mismo alumno agradeció los cambios que se han hecho (o sea ninguno) sin darse cuenta de que lo que ha cambiado es él mismo, su acercamiento al aprendizaje y la construcción de lenguaje y de habilidades que ha llevado a cabo. Por supuesto que el más sorprendido era él cuando el mismo grupo se lo hizo reconocer. Por otro lado, la niña que no quería hablar de temas fuera de la clase, propició una sesión completa para discutir sobre lo que significa madurar e independizarse de "las marcas" (la mercadotecnia) y las opiniones de los demás y construir su propia personalidad.

El grupo de Arquitectura ha sido el más tranquilo y el menos "cuadrado". Una vez que habíamos construido la ecuación ordinaria de la circunferencia se les pidió hacer un dibujo creativo en Desmos utilizando rectas y circunferencias, como tarea. Las preguntas (vía Edmodo) comenzaron a llegar: "¿podemos usar otro tipo de curvas?". No solamente aprendieron a graficar otras curvas y a establecer las ecuaciones ordinarias correspondientes (viendo la galería de dibujos en Desmos o los videos en el canal de Desmos en You Tube) sino que, además, aprendieron a colorear utilizando desigualdades y a limitar dominios y rangos. Por supuesto que eso aligeró en mucho la carga del curso. y ese ha sido más o menos el tenor. El único descontento: que la clase sea a las 7 A.M. y que solamente haya 10 minutos de tolerancia.

Así que nos quedan seis semanas de cursos. El grupo que me preocupa es el de Prerrequisitos. Veremos cuántos están dispuestos a despegar.