Mostrando entradas con la etiqueta contexto. Mostrar todas las entradas
Mostrando entradas con la etiqueta contexto. Mostrar todas las entradas

martes, 3 de enero de 2017

Las últimas semanas de noviembre, en el CIPEC


Para no perder el hilo del trabajo con los chicos en el CIPEC, conviene recordar lo que siguió después de la sesión en la que retomamos el asunto de la perspectiva, la proporcionalidad, etc., el 12 de noviembre.

En la sesión de 19 de noviembre hablamos de los entornos en los que nos desenvolvemos, especialmente la casa que habitamos y las personas con quienes la compartimos. El ejercicio propuesto fue construir el plano de la casa que nos gustaría tener en un futuro; primero la planta y luego el levantamiento. Y compartir con el grupo la construcción y  als ideas detrás de ella.

Lo único dibujado en el pizarrón fue una habitación rectangular, en isométrico, y el plano de lo que sería mi casa construida en algún pueblo con playa:


Luego, cada uno se dedicó a desarrollar su idea y, posteriormente, a compartir las respuestas a la pregunta que también se escribió en el pizarrón. Los chicos solamente desarrollaron las plantas de sus casas hipotéticas. En sus historias conservan a sus familiares viviendo con ellos en su vida futura. El desarrollar los levantamientos y visualizar las fachadas se les quedó como tarea pero, como sucede con estos trabajos, nunca llegan a realizarse por la falta de tiempos entre semana y de continuidad entre lo que hacemos los sábados y sus deberes en el resto de los días.

Algo en lo que hay que trabajar.




lunes, 25 de julio de 2016

Actividad matemática en el CIPEC

La semana pasada compartí un texto sobre lo que es la actividad matemática , tomado del libro La mistyfication mathématique de Alain Bouvier, que incluye una propuesta de 50 problemas entre abiertos y ya resueltos, sin que conozcamos en cuál de estas categorías está cada uno y, evidentemente, sin soluciones (para los ya resueltos) ni hints.

El libro llegó a mis manos en 1985 mientras estaba en el IREM de la Universidad París 7 Diderot, a punto de presentar mi tesis. Desde entonces lo he utilizado en diferentes ocasiones para tratar de despertar el interés por una verdadera actividad matemática con los estudiantes desde muy temprana edad. La resistencia es enorme porque, fundamentalmente, muy pocos docentes han entrado en este terreno y ante la ausencia de guías externos que les permitan saber si “voy bien o me regreso” se sienten desconcertados y desamparados. Traduzcan eso a lo que hacen en sus cursos: puras cosas previsibles, dependiendo del grado o el momento del ciclo escolar. No vamos a encontrar una ecuación lineal con soluciones negativas si no se han introducido los números negativos y las operaciones con ellos, por ejemplo. Y con enteros, por favor. Dado que nunca estuve sujeta a semejantes cosas, decido que siempre es buen momento para comenzar la exploración.

Hacia 1986-1987, mientras desarrollábamos uno de los primeros cursos de la maestría en Educación Matemática, modalidad semiabierta, en la Universidad de Guadalajara, me tocó hacerme cargo de las sesiones de heurística. El grupo estaba integrado por maestros de matemáticas para ingeniería, maestros de matemáticas de bachillerato y estudiantes de la licenciatura en matemáticas en su último semestre. De los 50 problemas propuestos por Bouvier seleccioné un problema diferente para cada subgrupo.

Me ocuparé del problema 36, propuesto a los estudiantes de último semestre de la licenciatura en matemáticas a quienes daba gusto (OK, no) escuchar hablar de los títulos de sus tesis sobre topología algebraica y menjurjes semejantes con aire docto.

El problema 36 pide encontrar los valores que puede tomar un entero positivo n para que 4^n + n^4 sea un número primo.

Para mi sorpresa, los estudiantes comenzaron a ensayar uno a uno los números del 1 al 17 antes de establecer un hecho que a uno puede parecerle obvio. Y es justo en ese punto donde los chicos del CIPEC mostraron que lo que necesitan son oportunidades.

La sesión en el CIPEC comenzó, como de costumbre, conversando con los que llegan temprano acerca de lo que han experimentado/aprendido/disfrutado/odiado en los días previos de esa semana. Hubo homemade brownies para potenciar el arranque, recordando que debíamos de decidir a quién habría que regalarle el libro de Alicia en el país de las maravillas que Célica Cánovas nos había donado. Después de hacer una semblanza de Lewis Carroll y Alicia y una breve introducción al libro, decidí que sería para quien mostrará razonamiento lógico en sus participaciones de la mañana.

Para entrar en calor les propuse un ejercicio que aparece en un problemario de preparación para un concurso de ¡informática!: ¿cuál es el último dígito de 2013^2013 ?

Es evidente que su calculadora no puede ayudarles. ¿Cómo podrían responder?
“Multiplicamos” dijeron algunos. Inténtenlo, respondí. Pero Paola, la más pequeña de las chicas, dijo que no sabía qué significaba la escritura dada. Me fui al origen, con Diofanto y su dedicatoria de sus libros de Aritmética, explicitado lo que significa x^n para valores de n = 1, 2, 3 y 4.

Resultó que ella no era la única con esa laguna cuando al escribir x^2 algunos dijeron que el valor de x se multiplicaba por 2. No avanzamos hasta que para todos quedó claro que la n se refiere al número de veces que se toma x como factor. Unos 10 minutos.

Regresamos al ejercicio: ¿cuál es el último dígito de 2013^2013? Que cambié por ¿en qué dígito termina 2013^2013? Mucho desconcierto, por supuesto. Propuse que uno siempre puede tratar de entender con un problema más sencillo (Polya dixit) y escribí 23^23, que sigue estando fuera del alcance de las calculadoras. Hice hincapié en que no nos interesa el resultado total sino solamente el dígito que representa las unidades. Hicimos un par de ejercicios para explicitar el algoritmo de la multiplicación paso a paso y notar que las unidades del producto provienen solamente del resultado de multiplicar las unidades de los dos factores en cuestión. Por ejemplo, si multiplicamos 27 por 63 sabemos (debiéramos de) que el producto termina en 1.

Entonces propuse esa actividad a la que el niño de seis años, François Le Lionnais, se entrega en una tarde aburrida de un verano caluroso (hacia 1908).  La historia es importante porque toca una de las quejas de la mañana: “me aburro en mi casa y no me gusta estar aquí”.

Le Lionnais cuenta que en ese estado de aburrimiento comenzó escribiendo los dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 y pensó, por supuesto, que el último dígito de cualquier otro número es, necesariamente, uno de esos dígitos (Le Lionnais no incluyó al cero, de lo cual se dio cuenta unos años después, pero yo lo hice para los chicos).
Determinó que al multiplicar un número por sí mismo (desconocía, dice, que eso se denominaba "cuadrado del número") el resultado solamente pueden terminar en  0, 1, 4, 9, 6, 5, 6, 9, 4, 1, correspondiendo a cada uno de los dígitos.

En ese momento tenía las dos líneas siguientes: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
0, 1, 4, 9, 6, ,5, 6, 9, 4, 1

Se percató, entre otras cosas, de la simetría en torno al 5, lo cual lo incita a continuar con las terminaciones de los cubos:

0, 1, 8, 7, 4, 5, 6, 3, 2, 9.  

Un desorden con algunas propiedades. Intrigado, intenta con la cuarta potencia:

0, 1, 6, 1, 6, 5, 6, 1, 6, 1.  

Que es una sorpresa total por su simetría, para comenzar, y porque no son muchos los sobrevivientes, dice.

¿Qué ocurrirá con la quinta potencia? Obtiene
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

En ese momento Paola, la chiquita que no conocía el significado de la potencia, dijo en voz alta: “¡entonces hay que dividir entre 4.”
  1. Alicia en el país de las maravillas  encontró a su dueña
  2. Le pregunté qué había que dividir entre 4 (en 23^23)

Nos explicó:

23, del exponente, entre 4 da 5 y sobran 3. Así que hay que ir a la tercera fila de las cuatro creadas, y mirar la que corresponde al 3: es 7. 23^23 termina en 7.

No estaba segura de que todos hubieran entendido cabalmente lo que acababa de suceder ni la explicación. Hicimos un par de ejercicios antes de regresar a 2013^2013.

Sí: “hay que dividir entre 4” se entendió dentro del contexto de la sesión, aunque habría que ver más adelante si se produjo conocimiento.

Al dividir 2013 entre 4 tenemos 1 como residuo, lo que significa que nos fijamos en la primera fila, en la columna que corresponde al 3: es 3

Había transcurrido alrededor de una hora desde que iniciamos la sesión, y todavía disponíamos de unos 30 minutos. Propuse el ejercicio 36 de la lista de Bouvier:
encontrar los valores que puede tomar un entero positivo n para que 4^n + n^4 sea un número primo.

“No me acuerdo cuáles son los números primos”, se escuchó. Escribí la definición en una esquina del pizarrón y la lista de los primos menores que 50. Hicimos el cálculo de  4^n + n^4 para n = 0, 1, y 2 y observamos que cuando n=1 obtenemos 5 como resultado, y entonces tenemos un número primo. Replantee el problema: ¿para cuales otros valores de n se obtienen números primos?

Después de un momento se produjo el segundo momento mágico: “No funciona para los números pares” dijo Itzel, una chica que ese día festejaba su cumpleaños 17. Añadió: “siempre daría un número par” (utilizó, por supuesto, los resultados del ejercicio anterior, mostrando que lo había vuelto conocimiento útil).

Excelente, dije. ¿Cuáles nos quedan como candidatos? “Los que terminan en 1, 3, 5, 7 y 9”, dijeron.

Continuar la exploración se quedó como tarea porque se nos acabó el tiempo.

Lo sorprendente es que estos chicos no han tenido otro entrenamiento que lo que han aprendido en la escuela y lo que hacemos en las sesiones sabatinas, las cuales no apuntan a convertirlos en campeones de concursos o semejantes. De hecho, la candidata más fuerte para participar en los concursos estatales, dentro de este grupo (sí, también es niña), no se escuchó durante estos ejercicios.

La otra cosa sorprendente, y que contrasta tremendamente con la petulancia de aquellos estudiantes de matemáticas en cursos de maestría (y no debería sorprenderme) es que aquí no necesitaron probar del 1 al 17 para darse cuenta de lo que Itzel hizo notar.

Si revisamos todo este rollo, quitando el anecdotario y haciendo un ejercicio de taxonomización, nos daremos cuenta de la cantidad de conocimiento generado/recuperado/puesto a prueba en una sesión que puede resumirse en 45 minutos tal vez, pero que sería tremendamente aburrida y desgastante sin esta comunicación/comunión en la que cada uno puede participar y expresar lo que no entiende sin temores, entre iguales.

Yo salí muy satisfecha, preparando lo que será la sesión del próximo sábado la cual iniciará con un breve convivio de festejo de tres cumpleañeros. Esos momentos, para mi gusto, son lo que permiten crear el ambiente de las sesiones de trabajo.

jueves, 31 de marzo de 2016

20 de febrero: proporcionalidad y semejanza

Ante el interés de los chicos por aprender a dibujar en perspectiva, como lo hace Toño, esta sesión la dedicamos a esos temas.

Comenzamos desde el arte, con un material sobre La representación del espacio que hice para el Diplomado en Enseñanza de las Matemáticas que diseñé e impartí en la Ibero Tijuana, en 2009. El texto que acompaña a esa presentación está también disponible.

Enseguida les pedí escuchar y observar el video que ilustra El teorema de Thales, obra de Les Luthiers, y explicar lo que hubieran entendido al respecto.

Por supuesto que hubo que esclarecer los términos al tiempo que introducíamos notaciones necesarias en geometría.





Y proponer un ejercicio sencillo que permitiera saber si habían entendido los conceptos y, al mismo tiempo, pudieran determinar las dimensiones de un corazón a una cierta distancia de uno dado, en pespectiva, para satisfacer la inquitud que dio origen a este tema.



Es importante señalar que estos aprendizajes se trasladan a otras áreas, pues actualmente los chicos trabajan, entre otras cosas, en el diseño de un mural en las paredes del patio del Centro. El diseño se hace en papel y luego se traslada al muro, en una escala adecuada, bajo la supervisión de Toño. Antes prepararon el muro.



Otra de las actividades es la creación de un huerto orgánico:




domingo, 29 de noviembre de 2015

La sesión de cierre con los chicos del CIPEC

Cinco sesiones de hora y media, una cada sábado, que terminaron ayer, 28 de noviembre.

Interesante y gratificante ver a estos niños/adolescentes que comenzaron diciendo que no entendían cómo se construía la recta numérica, qué era un polinomio, cómo se dividían, y para qué servía el álgebra, llegar a este día con lo que se describe en las fotos en puro lenguaje simbólico, graficando en el plano cartesiano de Desmos.

Esta vez, la explicación se encuentra en las fotos que se comparten en el enlace.

domingo, 15 de noviembre de 2015

La construcción de una caja

Los chicos con los que trabajamos Toño y yo (él trabaja con ellos sobre temas de lectura, redacción, dibujo) tienen entre 12 y 15 año. El conocimiento algebraico es practicamente inexistente por los pésimos programas educativos vigentes y porque los docentes solamente siguen alguno de los libros de texto que siguen los pésimos programas de manera muy mala.

La sesión comenzó a las 9:00 en punto, cuando apenas habían llegado la mitad de los chicos. Sin pausa, una de las niñas mayores me pidió que le explicara lo que era una ecuación cuadrática (cosas que no ha entendido en la escuela).

Comencé por explicar en el pizarrón, utilizando plumones de diferentes colores para diferenciar los elementos, la escritura general formal de un polinomio, los coeficientes, los exponentes, la variable (aquí no es incógnita). Entendido eso, que el exponente mayor se llama grado del polinomio y que el coeficiente en ese término se llama coeficiente principal. A partir de ahí que, dependiendo del grado del polinomio se hablaba de lineales (grado 1), cuadráticos (grado 2), cúbicos (grado 3), etc.

Entonces, una ecuación cuadrática, expliqué, es un polinomio de grado 2 igualado a cero:

                                            a*x^2 + b*x^1+ c*x^0 = 0

haciendo explícitas todas las potencias de x y comentando que no escribimos x^1 sino x, porque se supone que eso ya lo sabemos; ni escribimos c*x^0 porque se supone que sabemos también que x^0 = 1 y entonces c*x^0 se convierte en c*1 = c

Es decir, escribimos c*x^0 = c y la ecuación se escribe simplemente como

                                           a*x^2 + b*x + c = 0.

Agregué que las funciones cuadráticas (y expliqué la diferencia entre polinomio, ecuación y función) eran muy importantes en el estudio de los problemas de tiro parabólico, lo que ilustré con un problema sencillo, la gráfica, y todo lo que resulta de ahí.

Mientras, llegaron todos los estudiantes.

Expliqué la tarea a desarrollar y la escribí en el pizarrón:


Cada equipo de 4 disponía de una única hoja tamaño carta de papel de color rosa o verde. Si la echaban a perder no podrían tener otra. Además, sobre la mesa del profesor (por un lado del salón) había juegos de geometría, tijeras, cinta adhesiva y papel milimétrico.

Con una hoja blanca mostré que había que marcar dobleces sobre los cuatro bordes de la hoja, todos a la misma distancia de cada borde, para poder formar las esquinas correctamente, y mostré cómo doblar. Se les pidió que tomaran nota de cada cosa que iban decidiendo y haciendo para elaborar el reporte que presentarían al final de la sesión. Y comenzaron a trabajar de manera independiente, con mi supervisión constante para detectar si estaban atorados en algún punto o si estaban en otra conversación y actuar de manera pertinente.

Los tres equipos comenzaron por medir la hoja de color con mayor o menor precisión: 28 por 21.5 centímetros.


Equipo 1, muy activo. Registraron todo su proceso y lo fueron transformando para hacerlo más ágil y claro. Nunca doblaron la hoja de color para hacer tanteos. Solamente medición y cálculo del volumen en cada ocasión que cambiaban la medida que debían "recortar" de cada lado. Tampoco utilizaron el papel milimétrico. Era el equipo de los más jóvenes.
Desde el principio me dijeron que la base rectangular de la caja mediría 28 cm menos dos veces lo que tenían que doblar, por 21.5 menos esas dos veces. Pero estaba variando esa cantidad en cada cálculo. Su cuaderno se percibe, en la foto, lleno de esas explicaciones. Les pregunté que, si sabían que esa cantidad era la que hací que todo cambiara estaba variando, qué podían hacer para simplificar: "ponerle x" dijo una de las niñas. El cálculo se simplificó y sustituyeron la escritura que se observa por una tabla en la que iban registrando el valor de x y el volumen resultante, en cada caso.
El valor inicial que dieron al doblez fue de 4 cm, pero fueron a 3.5, 4.25 y 4.5 para determinar si el volumen crecía o no.  x = 4 parecía el mejor valor. Les sugerí verlo con mucho más precisión: calcularon para 4.01 y 4.02. el volumen era mayor en 4.01 y bajaba en 4.02. Les confié el secreto de Wolfram Alpha y el valor que proporciona: x = 4.019


Equipo 2, haciendo dobleces, por tanteos, con una hoja de papel milimétrico. Sin llevar un registro, a pesar de la insistencia de mi parte. En algún moment uno de ellos sugirió que mientras menor la altura y mayor la base rectangular, el volumen sería mayor. Le sugerí que pensara qué pasaría si fuera como una charola de hornear. Cayó en cuenta de su error. Comenzaron a doblar una y otra vez la hoja de color, sin registrar lo que resultaba, hasta que dejó de ser útil. La hoja de papel milimétrico la utilizaron mal, pues comenzaron a marcar las distancias a partir de los márgenes blancos y no de los bordes. Construyeron una caja, sí, pero no podían determinar si era la de mayor volumen.



Equipo 3, sin mucha participación, sin organización a pesar de a reiteración. reguntaron si la caja podría tener forma de cubo. Les pregunté si doblando la misma distancia en cada lado de la hoja obtendrían un cuadrado para la base, dijeron que no. Doblaron la hoja milimétrica para armar una caja, como se observa, y después midieron. Doblaron la hoja de color múltiples veces. No lograron avanzar.


Pasados 40 minutos el Equipo 1 dió cuenta de su trabajo y, por razones de tiempo, yo me puse en calidad de escribana para llevar el proceso al pizarrón de manera concisa. Las flechas que conectan los cálcullos, gráficos y tabla fueron parte de las respuestas a las preguntas de sus compañeros. Cuando iba a tomar la foto del pizarrón, ellos mismos se acomodaron para salir, orgullosos de su logro.


Termiamos con un regreso al punto de iinicio de la sesión: dado que en la fórmula de volumen, explícita en el pizarrón, hay tres x (una en cada factor), tenemos una función cúbica. Y que podíamos graficarla o pedirle al Wolfram Alpha que nos dijera todos sobre el polinomio cúbico involucrado. 


Sí, hay talento a pesar de lo que diga el INEE y sus exámenes que miden lo que a nadie le importa. 





jueves, 23 de febrero de 2012

Qué es un problema

Sigo con la historia de los problemas en la clase de matemáticas de mi hijo, en primero de primaria.
Cuando los niños entraron a segundo grado, cambié a mi hijo de escuela. Es algo que ha agradecido toda la vida. Sebastián (compañerito de Pako desde los días de la guardería, a los 20 meses) se quedó en el colegio "Jean Piaget" de Mixcoac.

La mamá de Sebastián, una excelente amiga y a quien considero una segunda madre para mi hijo, me pidió apoyo: Sebastián sabía realizar las operaciones aritméticas sin dificultad, pero no entendía los problemas que se le planteaban.

Era como natural. Después de haber sido entrenados a responder a las palabras claves, los problemas que requerían de más de una operación o que incorporaban multiplicación o división le presentaban retos. Escribí un texto para apoyarlo y, según su mamá, el niño entendió perfectamente y resolvió sus dificultades. La maestra utilizó el texto con su grupo y dijo que funcionaba muy bien. El texto se encuentra, con otros materiales, en mi website .

Pero eso de que funciona no hay que tomarlo tan al pie de la letra. En un taller con profesores de primaria (del cual surgió el texto que compartí en la entrada anterior) me ofrecí a hacerme cargo de un grupo de niños de segundo grado, ante la ausencia del sustituto del profesor titular. Asumí que el texto, probado y ya publicado por la Universidad Pedagógica Nacional, era un buen material para utilizarlo con esos chicos. Error total. El contexto no era el mismo que el de las primarias que yo conocía; los niveles de lectura y de lenguaje de los alumnos eran muy distintos. Me costó mucho trabajo establecer un diálogo con los niños. Hasta que alguien me rescató y rescató a los chiquitos de semejante experiencia. Un aprendizaje que me hacía falta.