Mostrando entradas con la etiqueta aprendizajes. Mostrar todas las entradas
Mostrando entradas con la etiqueta aprendizajes. Mostrar todas las entradas

sábado, 3 de diciembre de 2016

8 de octubre en CIPEC



Después de haber trabajado con el triángulo de Pascal en la sesión del 1 de octubre, retomamos lo ya desarrollado para aplicarlo en una aproximación a la probabilidad de una variable binomial. Antes, en otras sesiones, hemos abordado los significados de las probabilidades frecuencial y clásica.

Todos los términos que empleamos se van explicitando durante la sesión. Lo que se muestra en las tomas del pizarrón son, en general, las aportaciones de los chicos después de algunas actividades con lo que tenemos a la mano: dejar caer un plumón, echar un volado, etc. 

Algunas nociones deben ser replanteadas (como el significado de un porcentaje). Ciertamente no es suficiente. Sería necesario retrabajar los conceptos y los procesos durante los días de la semana o poder retomarlos varias veces durrante un ciclo escolar completo, pero no disponemos de esos tiempos.





Al elabora su propio  diagrama de árbol cuentan las opciones siguiendo con el dedo cada rama para establecer la sucesión de eventos ocurridos,

En este caso, además, se hizo evidente la relación entre la frecuencia de los valores de la variable (número de águilas en una serie de volados) y los valores del renglón correspondiente en el triángulo de Pascal.


Para continuar con el cálculo de la probabilidad en una situación donde ambos resultados en un volado tienen la misma probabilidad:


Y luego una situación en que la probabilidad de un resultado es mayor que la del otro:


Para plantear el caso mostrado en Rosencrantz & Guildestern are dead, y la manera en la que concluyen que están muertos. La situación se simplificó de la manera descrita en el pizarrón. 


Y cerramos la sesión, y el tema, con una aplicación a su vida cotidiana: aprobar un examen al "tin marín" cuando no se ha estudiado ni se ha aprendido durante el curso.



martes, 25 de octubre de 2016

Mi experiencia frente a las dificultades de los estudiantes Apuntes para un taller


 Cuando comencé a trabajar como docente de matemáticas, cinco grupos de primer grado en una secundaria técnica en la ciudad de México, sin preparación previa para desempeñarme como maestra ni interés manifiesto por semejante actividad, recuerdo (y lo he escrito muchas veces en blogsartículos sobre la docencia) que mi primera sorpresa no fue por las carencias en matemáticas que mostraban los chicos (mínimas comparadas con lo que constato ahora incluso en las universidades privadas más prestigiosas del país) sino por la incomprensión del lenguaje que supuestamente deben ser capaces de manejar. Por supuesto, las primeras manifestaciones se dieron respecto al lenguaje utilizado en matemáticas el cual, según yo, debieran conocer.
Para mí era incomprensible que los chicos no entendieran lo que significaba “máximo común divisor” por ejemplo, puesto que en ese título está contenida la definición. Me llevó un par de semanas y unos cuantos experimentos darme cuenta de que:
  1. La enseñanza por la que habían pasado los hizo memorizar nombres como etiquetas, desligados de cualquier significado
  2. Los algoritmos relacionados con esas etiquetas estaban vacíos porque nunca se construyó significado para ellos
  3. El problema de lenguaje no era solamente en lo referente a matemáticas

En la época, 1972, yo todavía era estudiante de licenciatura y nunca había tenido dificultades para comprender un texto. Sin más evidencia que lo que observaba con los chicos de los cinco grupos, hice mi primer par de estudios totalmente empíricos. Como tareas les pedí:
  • Que escribieran lo que era un día regular, entre semana, desde que despertaban hasta que se dormían
  • Que escribieran su biografía 

La composición de los grupos era heterogénea: chicos cuyos padres eran ingenieros en el Instituto Mexicano del Petróleo (situado justo frente a la escuela) y chicos hijos de campesinos que venían desde las pirámides (Teotihuacán), por ejemplo; chicos que tomaban cursos de idiomas o de música o de danza o de karate por las tardes, chicos cuyos padres (ambos) trabajaban y entonces debían llegar a sus casas a ocuparse de disponer la mesa para la comida y ayudar en tareas domésticas, chicos que trabajaban por las tardes y hasta parte de la noche para apoyar a la economía familiar. Los conflictos familiares eran igualmente variados y, en algunos casos, muy intensos.

Todo lo anterior se reflejaba en sus escritos. De las actividades desarrolladas en un día regular podía calcularse un promedio de 5 horas de televisión por día. Mientras menos favorecidos económicamente más horas de televisión al día. En la escritura de su autobiografía la falta de lenguaje y de claridad era muy evidente. En el caso más grave que recuerdo el chico se describía en el estilo de las estampitas de los héroes que se venden en las papelerías: “Fulanito de tal. Nació en ____ el día ____. Sus padres fueron ____ y ____.”

Mucho tiempo después, a través del análisis de mi propia experiencia como estudiante a lo largo de los años, de las de mis estudiantes en todos los niveles y de la de mi hijo, cuando comenzó a mostrar sus habilidades, comprendí que la adquisición temprana de un lenguaje suficiente y claro era lo que estaba en la base de la comprensión en matemáticas y cualquier otra área de estudio, en cualquier nivel. Adicionalmente, la lectura de los trabajos que encuentran relaciones de causa-efecto entre lenguaje materno y matemáticas, o los trabajos sobre la adquisición del lenguaje y la lectura de Emilia Ferreiro confirmaron mi hipótesis.

En aquel momento, y después de revisar y analizar las producciones de los chicos, lo primero que hice fue dedicar una semana por grupo (4 horas) a construir un lenguaje que nos permitiera comunicarnos sin muchos tropiezos y a crear un ambiente de confianza para que pudieran expresar sus dudas sin temor. Por mi parte, comencé a ver las series de televisión que habían mencionado en sus escritos para poder crear metáforas que les hicieran sentido.

Entonces vino la parte del lenguaje matemático: máximo común divisor significa “el mayor de los divisores comunes a dos números enteros dados”, y cada palabra tiene significado preciso. Común no significa vulgar, por ejemplo; significa que es algo que corresponde a dos o más sujetos. Batman y Robin tienen en común que aparecen en la misma serie de caricaturas (en la época); todos ustedes tienen en común que están en este grupo; etc.

Lo que puedo testimoniar es que, aunque parece un proceso lento, esta manera de trabajar permite luego avanzar con velocidad uniformemente acelerada porque se va construyendo cada concepto, cada proceso, sobre cimientos sólidos.

El proceso anterior es algo que he repetido con cada uno de los grupos, de cualquier nivel, al inicio de un curso. Establecemos reglas de convivencia que nos permitan trabajar en un ambiente de confianza y respeto, además.

Por otro lado, en lo que concierne a los contenidos de los cursos, lo que encuentro muy necesario es tomar en cuenta el pasado académico del estudiante (del grupo y de las individualidades más notables) para construir un puente que les permita llegar al punto de inicio del curso. En las condiciones actuales, tomando como punto de partida los lamentables programas educativos de todos los niveles, es prácticamente imposible esperar que un chico que se inicia en el álgebra pueda tener éxito sin un antecedente numérico.

Hay que tomar en cuenta que el conocimiento pitagórico sobre los números (Libro II de los Elementos de Euclides) se sitúa hacia los siglos V y VI antes de Cristo, mientras que el álgebra desarrollada por Al-Jwarizmi data del siglo IX después de nuestra era y el desarrollo del álgebra muy en la forma en que pretendemos que la aprendan los alumnos en el bachillerato se desarrolló en Europa, en Italia y Francia notablemente, a partir del siglo XV.

El desarrollo de la pura noción de numero negativo tiene una duración de alrededor de quince siglos, de acuerdo al análisis de Georges Glaeser en La epistemología de los números relativos[1]: “desde la época de Diofanto hasta nuestros días” dice. Porque una cosa es manipular los números (así sea con precisión, como ocurría con los matemáticos incluso notables) y otra cosa es comprender absolutamente el concepto.

Glaeser comenta que “Numerosos son los maestros que no sospechan que el aprendizaje de las reglas de los signos puede comportar dificultades.” Y suponen que es un problema del alumno. Incluso, dice: “Hans Freudenthal (uno de los matemáticos y educadores en matemáticas que más han contribuido a establecer las dificultades en el aprendizaje de esta materia, consignado en su obra clásica Mathematics as an Educational Task[2] y fundador de la revista especializada Educational Studies in Mathematics[3]) consagra 160 páginas del libro a examinar muchas de las dificultades que conlleva el aprendizaje de los números, y sin embargo apenas menciona la regla de los signos.”
“Uno se explica fácilmente este olvido sorprendente. En la época en la que él escribía esta obra, Freudenthal escogía los temas de sus análisis didácticos de entre sus recuerdos personales. Ahora bien, ningún matemático de su generación (ni de las nuestras) guarda recuerdo alguno de haber sido turbado por la regla de los signos.”

Sin embargo, Piaget (muy sensible a las observaciones que hace sobre los niños), consagra varias páginas de su obra Introduction à l’épistémologie génétique [4] a las dificultades provocadas por los números negativos.

Las señales de las dificultades que han enfrentado los estudiantes con esta noción se encuentra, entre otros casos, en la autobiografía de Stendhal, La vida de Henry Brulard. La parte donde hace referencia a estas dificultades la resumí en una especie de comic:



Es decir: no es tan sencillo como lo hacen parecer los programas educativos que parten del profundo desconocimiento de quienes los redactan. Y los profesores que creemos que lo más importante es terminar un programa, aunque los alumnos no aprendan ni un ápice, no ayudamos en ningún sentido a la formación o el interés por los estudiantes en la materia o en su aplicación para resolver problemas que tengan sentido.

Se trata, pues, de crear las condiciones y los apoyos para que el estudiante comprenda y no para que apruebe un curso sin sentido que solamente sirva para cumplir con indicadores escolares e institucionales. O no nos quejemos de lo que ayudamos a crear.




[1] Glaeser, Georges. Epistémologie des nombres relatifs. Recherches en didactique des mathématiques. Vol 2/3.  La pensée sauvage. 1981. Traducción al español de Marco Antonio Valencia, Fernando Ávila y Blanca M. Parra, publicada por la Sección de Matemática Educativa del CINVESTAV, en 1983.
[2] Freudenthal, Hans. Mathematics as an Educational Task. D. Reidel Publishing Company, Dordretcht-Hollland. 1973.
[3] Educational Studies in Mathematics. An International Journal. Editor-in-Chief: Merrilyn Goos. Springer.
[4] Piaget, Jean. Introduction à l’épistémologie génétique. 1. La pensée mathématique. Presses Universitaires de France. 1973. Pag 110 – 115 : Le nombre négatif et le zéro.

lunes, 25 de julio de 2016

Actividad matemática en el CIPEC

La semana pasada compartí un texto sobre lo que es la actividad matemática , tomado del libro La mistyfication mathématique de Alain Bouvier, que incluye una propuesta de 50 problemas entre abiertos y ya resueltos, sin que conozcamos en cuál de estas categorías está cada uno y, evidentemente, sin soluciones (para los ya resueltos) ni hints.

El libro llegó a mis manos en 1985 mientras estaba en el IREM de la Universidad París 7 Diderot, a punto de presentar mi tesis. Desde entonces lo he utilizado en diferentes ocasiones para tratar de despertar el interés por una verdadera actividad matemática con los estudiantes desde muy temprana edad. La resistencia es enorme porque, fundamentalmente, muy pocos docentes han entrado en este terreno y ante la ausencia de guías externos que les permitan saber si “voy bien o me regreso” se sienten desconcertados y desamparados. Traduzcan eso a lo que hacen en sus cursos: puras cosas previsibles, dependiendo del grado o el momento del ciclo escolar. No vamos a encontrar una ecuación lineal con soluciones negativas si no se han introducido los números negativos y las operaciones con ellos, por ejemplo. Y con enteros, por favor. Dado que nunca estuve sujeta a semejantes cosas, decido que siempre es buen momento para comenzar la exploración.

Hacia 1986-1987, mientras desarrollábamos uno de los primeros cursos de la maestría en Educación Matemática, modalidad semiabierta, en la Universidad de Guadalajara, me tocó hacerme cargo de las sesiones de heurística. El grupo estaba integrado por maestros de matemáticas para ingeniería, maestros de matemáticas de bachillerato y estudiantes de la licenciatura en matemáticas en su último semestre. De los 50 problemas propuestos por Bouvier seleccioné un problema diferente para cada subgrupo.

Me ocuparé del problema 36, propuesto a los estudiantes de último semestre de la licenciatura en matemáticas a quienes daba gusto (OK, no) escuchar hablar de los títulos de sus tesis sobre topología algebraica y menjurjes semejantes con aire docto.

El problema 36 pide encontrar los valores que puede tomar un entero positivo n para que 4^n + n^4 sea un número primo.

Para mi sorpresa, los estudiantes comenzaron a ensayar uno a uno los números del 1 al 17 antes de establecer un hecho que a uno puede parecerle obvio. Y es justo en ese punto donde los chicos del CIPEC mostraron que lo que necesitan son oportunidades.

La sesión en el CIPEC comenzó, como de costumbre, conversando con los que llegan temprano acerca de lo que han experimentado/aprendido/disfrutado/odiado en los días previos de esa semana. Hubo homemade brownies para potenciar el arranque, recordando que debíamos de decidir a quién habría que regalarle el libro de Alicia en el país de las maravillas que Célica Cánovas nos había donado. Después de hacer una semblanza de Lewis Carroll y Alicia y una breve introducción al libro, decidí que sería para quien mostrará razonamiento lógico en sus participaciones de la mañana.

Para entrar en calor les propuse un ejercicio que aparece en un problemario de preparación para un concurso de ¡informática!: ¿cuál es el último dígito de 2013^2013 ?

Es evidente que su calculadora no puede ayudarles. ¿Cómo podrían responder?
“Multiplicamos” dijeron algunos. Inténtenlo, respondí. Pero Paola, la más pequeña de las chicas, dijo que no sabía qué significaba la escritura dada. Me fui al origen, con Diofanto y su dedicatoria de sus libros de Aritmética, explicitado lo que significa x^n para valores de n = 1, 2, 3 y 4.

Resultó que ella no era la única con esa laguna cuando al escribir x^2 algunos dijeron que el valor de x se multiplicaba por 2. No avanzamos hasta que para todos quedó claro que la n se refiere al número de veces que se toma x como factor. Unos 10 minutos.

Regresamos al ejercicio: ¿cuál es el último dígito de 2013^2013? Que cambié por ¿en qué dígito termina 2013^2013? Mucho desconcierto, por supuesto. Propuse que uno siempre puede tratar de entender con un problema más sencillo (Polya dixit) y escribí 23^23, que sigue estando fuera del alcance de las calculadoras. Hice hincapié en que no nos interesa el resultado total sino solamente el dígito que representa las unidades. Hicimos un par de ejercicios para explicitar el algoritmo de la multiplicación paso a paso y notar que las unidades del producto provienen solamente del resultado de multiplicar las unidades de los dos factores en cuestión. Por ejemplo, si multiplicamos 27 por 63 sabemos (debiéramos de) que el producto termina en 1.

Entonces propuse esa actividad a la que el niño de seis años, François Le Lionnais, se entrega en una tarde aburrida de un verano caluroso (hacia 1908).  La historia es importante porque toca una de las quejas de la mañana: “me aburro en mi casa y no me gusta estar aquí”.

Le Lionnais cuenta que en ese estado de aburrimiento comenzó escribiendo los dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 y pensó, por supuesto, que el último dígito de cualquier otro número es, necesariamente, uno de esos dígitos (Le Lionnais no incluyó al cero, de lo cual se dio cuenta unos años después, pero yo lo hice para los chicos).
Determinó que al multiplicar un número por sí mismo (desconocía, dice, que eso se denominaba "cuadrado del número") el resultado solamente pueden terminar en  0, 1, 4, 9, 6, 5, 6, 9, 4, 1, correspondiendo a cada uno de los dígitos.

En ese momento tenía las dos líneas siguientes: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
0, 1, 4, 9, 6, ,5, 6, 9, 4, 1

Se percató, entre otras cosas, de la simetría en torno al 5, lo cual lo incita a continuar con las terminaciones de los cubos:

0, 1, 8, 7, 4, 5, 6, 3, 2, 9.  

Un desorden con algunas propiedades. Intrigado, intenta con la cuarta potencia:

0, 1, 6, 1, 6, 5, 6, 1, 6, 1.  

Que es una sorpresa total por su simetría, para comenzar, y porque no son muchos los sobrevivientes, dice.

¿Qué ocurrirá con la quinta potencia? Obtiene
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

En ese momento Paola, la chiquita que no conocía el significado de la potencia, dijo en voz alta: “¡entonces hay que dividir entre 4.”
  1. Alicia en el país de las maravillas  encontró a su dueña
  2. Le pregunté qué había que dividir entre 4 (en 23^23)

Nos explicó:

23, del exponente, entre 4 da 5 y sobran 3. Así que hay que ir a la tercera fila de las cuatro creadas, y mirar la que corresponde al 3: es 7. 23^23 termina en 7.

No estaba segura de que todos hubieran entendido cabalmente lo que acababa de suceder ni la explicación. Hicimos un par de ejercicios antes de regresar a 2013^2013.

Sí: “hay que dividir entre 4” se entendió dentro del contexto de la sesión, aunque habría que ver más adelante si se produjo conocimiento.

Al dividir 2013 entre 4 tenemos 1 como residuo, lo que significa que nos fijamos en la primera fila, en la columna que corresponde al 3: es 3

Había transcurrido alrededor de una hora desde que iniciamos la sesión, y todavía disponíamos de unos 30 minutos. Propuse el ejercicio 36 de la lista de Bouvier:
encontrar los valores que puede tomar un entero positivo n para que 4^n + n^4 sea un número primo.

“No me acuerdo cuáles son los números primos”, se escuchó. Escribí la definición en una esquina del pizarrón y la lista de los primos menores que 50. Hicimos el cálculo de  4^n + n^4 para n = 0, 1, y 2 y observamos que cuando n=1 obtenemos 5 como resultado, y entonces tenemos un número primo. Replantee el problema: ¿para cuales otros valores de n se obtienen números primos?

Después de un momento se produjo el segundo momento mágico: “No funciona para los números pares” dijo Itzel, una chica que ese día festejaba su cumpleaños 17. Añadió: “siempre daría un número par” (utilizó, por supuesto, los resultados del ejercicio anterior, mostrando que lo había vuelto conocimiento útil).

Excelente, dije. ¿Cuáles nos quedan como candidatos? “Los que terminan en 1, 3, 5, 7 y 9”, dijeron.

Continuar la exploración se quedó como tarea porque se nos acabó el tiempo.

Lo sorprendente es que estos chicos no han tenido otro entrenamiento que lo que han aprendido en la escuela y lo que hacemos en las sesiones sabatinas, las cuales no apuntan a convertirlos en campeones de concursos o semejantes. De hecho, la candidata más fuerte para participar en los concursos estatales, dentro de este grupo (sí, también es niña), no se escuchó durante estos ejercicios.

La otra cosa sorprendente, y que contrasta tremendamente con la petulancia de aquellos estudiantes de matemáticas en cursos de maestría (y no debería sorprenderme) es que aquí no necesitaron probar del 1 al 17 para darse cuenta de lo que Itzel hizo notar.

Si revisamos todo este rollo, quitando el anecdotario y haciendo un ejercicio de taxonomización, nos daremos cuenta de la cantidad de conocimiento generado/recuperado/puesto a prueba en una sesión que puede resumirse en 45 minutos tal vez, pero que sería tremendamente aburrida y desgastante sin esta comunicación/comunión en la que cada uno puede participar y expresar lo que no entiende sin temores, entre iguales.

Yo salí muy satisfecha, preparando lo que será la sesión del próximo sábado la cual iniciará con un breve convivio de festejo de tres cumpleañeros. Esos momentos, para mi gusto, son lo que permiten crear el ambiente de las sesiones de trabajo.

viernes, 12 de septiembre de 2014

Return!


Hace rato que no me aparezco por aquí, ocupada en proyectos que no terminan de cuajar y una muy decidida vocación por el dolce far niente.

Pero resulta que esta semana, el martes 9 de septiembre, fui responsable de un taller en Irapuato, en ocasión del Congreso del Nivel Medio Superior para fortalecer los trayectos educativos de los alumnos. Aunque formalmente lo que hice fue "coordinar una mesa de trabajo", en realidad lo que coordiné fue un taller sobre "Estrategias para fortalecer el logro educativo en matemáticas". Por lo menos ese fue el título, aunque la intención era promover un poquito de subversión.

Dadas mi habilidades natas para la divagación, redacté un guion para mí. Y durante la sesión, mientras trabajaba con unos 60 docentes, tomé algunas notas que se convirtieron en el reporte de la sesión, solicitado por la Secretaría de Educación de Guanajuato.

Les comparto algunas fotos de la reunión, mientras los docentes trabajaban para entender lo que SI es PBL.








miércoles, 2 de julio de 2014

Sigue la historia de mis alumnos

Me queda claro que tanto la física como las matemáticas que han aprendido son de formulita. No saben analizar un problema ni, mucho menos, plantearlo. Un verano no da para deshacer todos los entuertos, sobre todo si el alumno es pasivo (también parte de su historia escolar) y no quiere arriesgar nada para no parecer "tonto". Solamente una alumna ha modificado esta actitud y los resultados son notables.

La cuestión es que el problema del cálculo del centro de masa siguió siendo difícil, dijeron.
Del libro de Física General de la serie Schaum debían resolver los ejercicios del 21 al 42 del capítulo 8, para un examen rápido, que aplicaría el lunes 30 de junio, para el que yo seleccionaría aleatoriamente uno de los ejercicios mencionados.

Me mandaron mensajes a través de Edmodo el domingo por la noche: que si era posible que antes del examen rápido resolviéramos las dudas. Casi todo eran dudas pero, especialmente, lo de centros de masa.

Sin revisar los problemas pregunté las dudas que habían surgido:
  • cómo determinar la ubicación de la figura en el plano, de manera de simplificar los cálculos
  • cómo determinar las "ecuaciones" de las curvas de la figura
  • cómo determinar los límites de integración para los cálculos

y algunas cosas más.

Fui construyendo el siguiente diagrama, retroalimentado por las preguntas y dudas que iban surgiendo:






Todos quedaron satisfechos con la explicación.
Y entonces fuimos a ver el problema que no habían podido resolver, que resultó ser el 8.31

Es decir que no había nada de cálculo integral. Un simple ejercicio del centroide de un triángulo.

Antes de ver el ejercicio resuelto 8.10 (con las fórmulas) resolvimos el 8.31 trabajando a partir de la solución dada ahí mismo, y hacia atrás. Entonces "les cayó el veinte". Eso tampoco se les ocurre.

Lo que me parece más grave es esa parálisis que no les permite siquiera darse cuenta de lo ya hecho, de lo que tienen en las notas que hayan tomado en clase, etc. Pareciera que en automático la respuesta es "no sé y no voy a intentar comprender".

Mis reportes a las autoridades académicas, en el sentido de que estos alumnos necesitan una reeducación en matemáticas, particularmente, y no más cursos de formularios, recibieron como respuesta un "hay mucho por hacer". ¿Cuándo? ¿Quién?

sábado, 23 de noviembre de 2013

Fin de semestre = preparación de examines finales

Uno diseña su curso, de a buenas.  ¿Qué necesitan aprender mis alumnos? ¿Qué necesitan saber y saber hacer antes de entrar a un curso de cálculo diferencial e integral? Y va construyendo experiencias, actividades, ejercicios mientras monitorea el avance para ir reforzando los aprendizajes a través de mapas mentales, narraciones, comics explicativos, diagramas de flujo, dibujos donde jueguen con las curvas de manera creativa, con trabajo individual, o en parejas, o en equipos, etc.

Cierto, antes de iniciar el semestre nos habían reunido para comentarnos que habría menos grupos de Cálculo I (diferencial e integral) que los que habían supuesto, dado el nivel de conocimientos de los alumnos de primer ingreso, medido con algún instrumento. A cambio, habría varios cursos de Prerrequisitos. Cuatro profesores fuimos asignados a un número igual de grupos: tres profes de asignatura y uno de tiempo.

¿Propuestas para ayudar a los jóvenes a alcanzar el nivel requerido?  “Que sigamos un mismo libro de texto porque los alumnos deben acostumbrarse a tener un libro y seguirlo” dijo el profe de tiempo. Supongo que alcé las cejas, todavía no aprendo a poner cara de palo y no tenía ni bufanda ni abanico para cubrirme (son mis recursos cuando anticipo desacuerdos que no puedo ocultar facialmente). “Yo propongo que utilicemos el Baldor” dijo uno de los profes de asignatura. Y aquí sí fue más que alzar las cejas: ¡No! Dije. De entrada es pésimo como libro de texto y, en todo caso, es de nivel de secundaria. La propuesta de llevar un libro de texto quedó registrada y se acordó que fuera el Stewart de Precálculo.

No hubo más acuerdos registrados, y no tuvimos ninguna comunicación sobre el avance de los grupos entre los profesores. Cada uno hizo del programa lo que pensó que era adecuado, supongo. En mi caso, reestructuré el programa dentro de lo posible, porque el formato que se entrega a los alumnos y se registra oficialmente está predeterminado, incluyendo los puntos de corte para cada uno de los dos exámenes parciales. Cuando me dicen que la academia decidió eso, no tengo ni idea de a qué o a quiénes se refieren. Pero sí me queda claro que no atiende a nada de didáctica o pedagogía.

Como quiera, mi curso fue y vino entre los temas, forzando la revisión constante y la interrelación de los conceptos y los procesos. Terminamos hace una semana con un grupo de alumnos que no manejan un formulario porque no lo necesitan, pero que saben utilizar el Teorema de Pitágoras en diferentes situaciones y de manera correcta, que saben lo que significa la pendiente de una recta y la pueden interpretar para trazar una recta desde cualquiera de sus puntos, que saben utilizar el álgebra para determinar las características de una función algebraica (excepto lo que depende del cálculo) y que se sienten seguros. A veces trabajamos con papel milimétrico y papel de doblar solamente, a veces utilizamos Desmos o GeoGebra o Wolfram Alpha, dependiendo del problema. Desarrollaron una muy valiosa independencia e interactuaron cuando lo creyeron necesario para resolver sus dudas.

La semana anterior comenzamos la revisión de los ejercicios de repaso y de autoevaluación de cada capítulo del 1 al 10 de libro de texto (que no utilizamos consistentemente durante el curso), anticipando que el examen sería departamental. Ellos propusieron los ejercicios que querían resolver y trabajaron en un ambiente muy relajado. Así terminamos la revisión de los primeros cinco capítulos, y nos queda la siguiente semana para terminar con calma.

Hace una semana los profesores volvimos a reunirnos, ahora para decidir sobre el examen y su elaboración. Previamente, la coordinadora nos había pedido llevar una propuesta a la reunión.  La primera “agresión” vino del profe de tiempo: “porque hay maestros que no llevaron el libro de texto, dicen sus alumnos”. Supongo que era conmigo porque ya antes me había encontrado en el pasillo para preguntarme si al grupo de Bionanotecnología (no de prerrequisitos) yo le había asignado una tarea con ejercicios “raros” que no correspondían al libro de texto, porque él les estaba dando asesoría y eso le habían llevado. Pero no, yo no había dejado nada.

Mi propuesta de examen toma un ejercicio integral (que comprende diversos conceptos) de cada uno de los capítulos del libro. Por ejemplo:

Ejercicio 17, página 136, Capitulo 1.
Dados P(-3,1) y Q(5, 6), puntos en el plano coordenado:
a)      Grafique P y Q
b)      Calcule la distancia entre P y Q
c)       Determine el punto medio del segmento PQ
d)      Determine la pendiente de la recta que pasa por P y Q
e)      Encuentre la bisectriz perpendicular a la recta que contiene a P y a Q
f)       Encuentre la ecuación de la circunferencia para la cual el segmento PQ es un diámetro

Otro grito del profesor, respecto al ejercicio  6, página 740, capítulo 9:
Un contratista de vivienda subdividió una granja en 100 lotes para construcción. Diseñó dos tipos de casas para estos lotes: tipo colonial y tipo rancho. Una casa colonial requiere de 30000 dólares de capital  y producirá una ganancia de 4000 dólares cuando se venda. Una casa tipo rancho requiere de 40000 dólares de capital y producirá una ganancia de 8000 dólares cuando se venda. El contratista cuenta con 3.6 millones de dólares de capital. ¿Cuántas casas de cada tipo deberá construir y vender para maximizar la ganancia?

“Eso no está en el programa”. Tranquilamente respondí: es una aplicación de rectas, intersecciones, desigualdades y evaluación. “Pero no está en el programa”. La coordinadora secundó mi comentario. Me quedó claro que sus alumnos no podrían resolver algo de ese tipo, tal vez ni siquiera plantearlo.

Las propuestas de los tres profesores abundan en factorizaciones y simplificaciones que, según yo, están ya incluidas en muchos de los otros ejercicios de graficación de funciones y cónicas para las cuales hay que determinar todos sus elementos, y en los ejercicios sobre funciones exponenciales y logarítmicas.

Varios de los ejercicios propuestos en el examen del profe de tiempo habían sido ya propuestos y resueltos por los alumnos de mi grupo, pero no dije nada. 

Otros exámenes carecen de estructura y es imposible vislumbrar el tipo de aprendizaje que buscan “medir”. Todos adolecen de una terrible mala redacción (y no los copiaron literalmente del libro de texto que tanto defienden) y algunos también de faltas de ortografía.

El siguiente punto de desacuerdo, no manifestado de frente (y eso es lo que más me molesta) fue sobre la fecha del examen. Un profesor y yo habíamos acordado con los alumnos (que hicieron las propuestas) desde el primer día de clase, que el examen sería el 6 de diciembre, siendo la fecha límite para entregar calificaciones el 9. Otro profesor había acordado con su grupo que el examen sería en la semana que inicia el 2 de diciembre. El profe  de tiempo dijo que el calendario marca que el fin de cursos es el 3 de diciembre. 

La coordinadora dijo que no había problema en que el examen (único) lo hiciéramos todos el 6, a la misma hora, cada quien con su grupo.  Y salimos con la tarea de revisar las cuatro propuestas, elaborar un único examen a partir de ellas y presentarlo el viernes pasado. Pero las propuestas tardaron en llegar. ¡La última la recibí el jueves! Y el viernes no hubo quorum para la reunión (yo me quedé dormida). Un último acuerdo: se utilizará la calculadora pero “queda prohibido cualquier otro aparato de comunicación o tecnología”.

Por la tarde del viernes recibimos un comunicado de la coordinación: cada quien hace su examen y se aplicará a más tardar el 3, excepto que los alumnos estén TODOS de acuerdo (en el grupo de cada uno) en hacerlo posteriormente.

Me queda claro que una de las causas de la inmovilidad y el anquilosamiento de una institución se da a través de los profesores que tienen estatus o privilegios. Una de las razones por las cuales no soy parte de la Asociación Nacional de Profesores de Matemáticas, aunque en ella participe gente muy valiosa.

Veremos qué dicen los alumnos el lunes. De entrada ya habían dicho que Desmos es una calculadora graficadora. Y estoy de acuerdo. Y saben que los ejercicios que propongo requieren más que solamente hacer operaciones, y para eso no hay más que comprender lo que hacen y para qué lo hacen. Y tengo mucha confianza en que  al menos el 90% está bien preparado. 

La siguiente imagen muestra una respuesta muy válida a un ejercicio muy mal planteado. Just saying!





jueves, 24 de octubre de 2013

Caminamos, Sancho

A pesar de las quejas de algunos alumnos o el despiste de un par de alumnas, pareciera que avanzamos.
La clase de hoy con el grupo de Prerrequisitos B comenzó con el plano y sus cuadrantes. Y lo que se derivará de ahí en cursos futuros:

  • Vectores en el plano y en el espacio (Física)
  • Superficies en tres dimensiones
  • Programación lineal = Investigación de operaciones


Con esa perspectiva, establecimos una desigualdad lineal y coloreamos las dos regiones separadas por la recta involucrada. Con ello, desarrollamos el ejercicio siguiente:

Dadas 
y ≥ 2x - 3  
y ≤ -x + 2
y ≤ x - 4
  • Colorear la región donde se cumplen las tres desigualdades
  • Determinar las coordenadas de los vértices de esa región
  • Calcular las longitudes de los lados del polígono (la región)
  • Calcular las medidas de los ángulos del interior del polígono 
  • Calcular el perímetro del polígono
  • Calcular el área del polígono 


Herramientas: el plano y el Teorema de Pitágoras, además de lo que aprendieron de trigonometría en las semanas anteriores. Ninguna fórmula y sí la exigencia de presentar los resultados en valores precisos (racionales y radicales)

Las regiones se pueden visualizar en Desmos: https://www.desmos.com/calculator/lszgwesgit
Los alumnos desarrollaron a mano los trazos y cálculos, trabajando colaborativamente cuando lo sintieron necesario.

A estas alturas, solamente dos alumnas no tienen todavía idea de dónde están en el curso. 

domingo, 20 de noviembre de 2011

Los retos de mis alumnos

Aquí sigo, aunque con un poquito de retraso.

Con referencia al reto que propuse a mis alumnos, les compartiré los videos que elaboraron. Y no agregaré comentarios. Todos me parecen igualmente valiosos.




  • El siguiente video no se puede descargar directamente de You Tube, pero les comparto la liga de Intro



Las imágenes que utilizaron los alumnos están tomadas del banco de imágenes que fuimos construyendo durante el semestre, alojándolas en nuestro grupo en Facebook.